Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 24020041-7    https://doi.org/10.11896/cldb.24020041
  路域废弃物资源化及高值化利用 |
磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响
张洪智1, 梁取平1, 邵明扬1, 姜能栋1, 杨梦宇1, 隋高阳2, 葛智1,*
1 山东大学齐鲁交通学院,济南 250002
2 山东省水利勘测设计院有限公司,济南 250013
Influence of Circulating Refined Fluidized Bed Fly Ash on Mechanical Properties and Pore Structure of Foamed Concrete
ZHANG Hongzhi1, LIANG Quping1, SHAO Mingyang1, JIANG Nengdong1, YANG Mengyu1, SUI Gaoyang2, GE Zhi1,*
1 School of Qilu Transportation, Shandong University, Jinan 250002, China
2 Shandong Survey and Design Institute of Water Conservancy Co., Ltd., Jinan 250013, China
下载:  全 文 ( PDF ) ( 3456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为促进循环流化床粉煤灰(CFA)的资源化利用,减少水泥消耗量,通过粉磨细化激发CFA的反应活性,利用磨细循环流化床粉煤灰(RCFA)部分替代水泥制备泡沫轻质土。研究了RCFA掺量对复合胶凝体系需水量、凝结时间、水化热、水化产物以及对泡沫轻质土工作性能和力学性能的影响。通过X射线断层扫描和图像处理技术研究了RCFA对泡沫轻质土孔结构的影响。结果表明,增加RCFA掺量会增加复合胶凝体系的需水量,延长凝结时间,减缓水化速度,减少总水化热并提升单位水泥水化热。30%掺量下的RCFA能与水泥充分反应,改善泡沫轻质土的孔结构并提升其力学性能。更高掺量的RCFA不利于轻质土的孔结构与力学性能,但70%掺量条件下的轻质土仍能满足路基填筑力学需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张洪智
梁取平
邵明扬
姜能栋
杨梦宇
隋高阳
葛智
关键词:  循环流化床粉煤灰  泡沫轻质土  力学性能  孔结构    
Abstract: To promote the resource utilization of circulating fluidized bed fly ash (CFA) and reduce cement consumption, the reactivity of CFA was activated by grinding. Foamed concrete was prepared by partially replacing cement with refined circulating fluidized bed fly ash (RCFA). The influence of RCFA content on the water requirement, setting time, hydration heat and hydration product of the composite cementitious system, as well as the workability and mechanical properties of foamed concrete was studied. The effect of RCFA on the pore structure of foamed concrete was studied by X-ray tomography and image processing technology. The results show that increasing the amount of RCFA increased the water requirement of composite cementitious system, prolonged setting time, slowed down hydration rate, reduced cumulative hydration heat release and raised the unit cement hydration heat. At the substitution rate of 30%, RCFA can fully react with cement, improve the pore structure and mechanical properties of foamed concrete. A higher content of RCFA is detrimental to the pore structure and mechanical properties of foamed concrete. However it can still meet the mechanical needs of subgrade filling under the replacement level of 70%.
Key words:  circulating fluidized bed fly ash    foamed concrete    mechanical property    pore structure
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  U414  
基金资助: 山东省泰山学者青年专家计划(tsqn201909032)
通讯作者:  *葛智,山东大学齐鲁交通学院教授、博士研究生导师。2000年获清华大学水利水电工程专业学士学位,2005年获爱荷华州立大学土木工程专业哲学博士学位。目前主要从事高性能水泥基材料、水泥基功能性材料、混凝土微观结构和固弃物的再生利用等方面的研究。发表学术论文70余篇,其中SCI及EI收录30余篇,获国家发明专利专利授权30余项。zhige@sdu.edu.cn   
作者简介:  张洪智,山东大学齐鲁交通学院教授、博士研究生导师,国家级青年人才,山东省泰山学者青年专家。2013年获哈尔滨工业大学土木工程专业学士学位,2015年获哈尔滨工业大学土木工程专业硕士学位,2019年获代尔夫特理工大学结构工程博士学位。目前主要从事3D打印混凝土与超材料、固碳及绿色功能混凝土、材料性能表征与数值仿真等方面的研究工作。发表学术论文60余篇,获国家发明专利授权20余项。
引用本文:    
张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
ZHANG Hongzhi, LIANG Quping, SHAO Mingyang, JIANG Nengdong, YANG Mengyu, SUI Gaoyang, GE Zhi. Influence of Circulating Refined Fluidized Bed Fly Ash on Mechanical Properties and Pore Structure of Foamed Concrete. Materials Reports, 2024, 38(22): 24020041-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24020041  或          http://www.mater-rep.com/CN/Y2024/V38/I22/24020041
1 Gencel O, Bilir T, Bademler Z, et al. Applied Sciences, 2022, 12(11), 5752.
2 Song Q, Zhang P, Bao J W, et al. Journal of the Chinese Ceramic Society, 2021, 49(2), 398(in Chinese).
宋强, 张鹏, 鲍玖文, 等. 硅酸盐学报, 2021, 49(2), 398.
3 Shah S N, Mo K H, Yap S P, et al. Resources Conservation and Recycling, 2021, 164, 105103.
4 Schneider M, Hoenig V, Ruppert J, et al. Cement and Concrete Research, 2023, 173, 107290.
5 Nie S, Zhou J, Xu M F, et al. Materials Reports, 2024, 38(2), 60(in Chinese).
聂松, 周健, 徐名凤, 等. 材料导报, 2024, 38(2), 60.
6 Duchesne J. Waste and Biomass Valorization, 2021, 12(3), 1219.
7 Ye X S, Liu Y, Liu Y B, et al. Yangtze River, 2022, 53(12), 179(in Chinese).
叶仙松, 刘雨, 刘耀邦, 等. 人民长江, 2022, 53(12), 179.
8 Jose S K, Anagha S S, Meera B, et al. E3S Web of Conferences, 2023, 405, 03023.
9 Zhao Z F, Wang X F, Wang G D, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(6), 2108(in Chinese).
赵正峰, 王笑风, 王国栋, 等. 硅酸盐通报, 2022, 41(6), 2108.
10 Awang H, Aljoumaily Z S. Cogent Engineering, 2017, 4(1), 1409853.
11 Ma X D, He T S, Xu Y D, et al. Construction and Building Materials, 2023, 378, 131210.
12 Jia G H, Wang Y L, Yang F L, et al. Advances in Materials Science & Engineering, 2022, 2022, 7099430.
13 Dong B Q, Zang X, Liu Y T, et al. Materials Reports, 2024, 38(20), 23090133(in Chinese).
董必钦, 张枭, 刘源涛, 等. 材料导报, 2024, 38(20), 23090133.
14 Li D L, Wang D M, Ren C F. Science Technology and Engineering, 2020, 20(28), 11735(in Chinese).
李端乐, 王栋民, 任才富. 科学技术与工程, 2020, 20(28), 11735.
15 Li J T, Lei X J, Zhang W Q, et al. In: Proceedings of the 2010 International Conference on Electrical and Control Engineering. Wuhan, 2010, pp.3878.
16 Paaver P, Paiste P, Liira M, et al. Minerals, 2021, 11(1), 3.
17 Liu W H, Liu X Y, Zhang L, et al. Construction and Building Materials, 2024, 411, 134688.
18 Song D Q. Railway Construction Technology, 2023(12), 33(in Chinese).
宋德庆. 铁道建筑技术, 2023(12), 33.
19 Zhang T, Zhu C. Bulletin of the Chinese Ceramic Society, 2022, 41(3), 903(in Chinese).
张涛, 朱成. 硅酸盐通报, 2022, 41(3), 903.
20 Huang S L, Yao J K, Yang Y, et al. Crystals, 2022, 12(6), 802.
21 Dai L H, Xie G C, Gong J W. Concrete, 2023(2), 75(in Chinese).
代凌辉, 谢刚川, 宫经伟. 混凝土, 2023(2), 75.
22 Huang B Y, Cui S P, Wang Y L, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(5), 1804(in Chinese).
黄炳银, 崔素萍, 王亚丽, 等. 硅酸盐通报, 2023, 42(5), 1804.
23 Sun Z P, Yan Z H, Zhang T, et al. Materials Reports, 2024, 38(1), 117(in Chinese).
孙振平, 闫珠华, 张挺, 等. 材料导报, 2024, 38(1), 117.
24 Lin Y K, He T S, Da Y, et al. Journal of Building Engineering, 2023, 80, 107994.
25 Ren C F, Wang D M, Zheng D P, et al, Journal of Mining Science and Technology, 2016, 1(1), 96(in Chinese).
任才富, 王栋民, 郑大鹏, 等. 矿业科学学报, 2016, 1(1), 96.
26 Jiang N D, Ge Z, Guan Y H, et al. Theoretical & Applied Fracture Mechanics, 2022, 122, 103631.
27 Bai Y H, Pan Q Y. Bulletin of the Chinese Ceramic Society, 2022, 41(6), 2047(in Chinese).
白应华, 潘秋阳. 硅酸盐通报, 2022, 41(6), 2047.
28 Wu S C. Journal of Henan University of Urban Construction, 2023, 32(6), 22(in Chinese).
吴少财. 河南城建学院学报, 2023, 32(6), 22.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed