Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22080048-5    https://doi.org/10.11896/cldb.22080048
  无机非金属及其复合材料 |
二水磷石膏-电石渣-镍铁渣三元胶凝体系的性能与微观结构
马梦阳1,2, 贺行洋3,4,*, 熊光3, 李欣懋3, 龙勇1,2, 王福龙5
1 桥梁结构健康与安全国家重点实验室,武汉 430034
2 中铁大桥科学研究院有限公司,武汉 430034
3 湖北工业大学土木建筑与环境学院,武汉 430068
4 湖北工业大学湖北省建筑防水工程技术研究中心,武汉 430068
5 中建七局总承包有限公司,郑州 450000
Properties and Microstructure of Dihydrate Phosphogypsum-Calcium Carbide Slag-Ferronickel Slag Ternary System
MA Mengyang1,2, HE Xingyang3,4,*, XIONG Guang3, LI Xinmao3, LONG Yong1,2, WANG Fulong5
1 State Key Laboratory for Health and Safety of Bridge Structures, Wuhan 430034, China
2 China Railway Bridge Science Research Institute., Ltd, Wuhan 430034, China
3 School of Civil Engineering and Environmental Sciences, Hubei University of Technology, Wuhan 430068, China
4 Building Waterproof Engineering and Technology Research Center of Hubei Province, Hubei University of Technology, Wuhan 430068, China
5 China Construction Seventh Engineering Division Corp., Ltd, Zhengzhou 450000, China
下载:  全 文 ( PDF ) ( 8158KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以二水磷石膏-电石渣-镍铁渣三元胶凝体系制备全固废胶凝材料,研究电石渣与二水磷石膏掺量对三元胶凝体系性能的影响,并采用XRD、扫描电镜分析了体系的水化产物、微观形貌和元素组成。结果表明:二水磷石膏和电石渣均会降低三元胶凝体系的流动度;受二水磷石膏中磷、氟等缓凝成分的影响,三元胶凝体系的凝结时间被大大延长,3 d抗压强度也随之下降,但二水磷石膏的掺入有利于后期强度的增长;电石渣的掺入缩短了三元胶凝体系的凝结时间,但降低了体系的抗压强度;三元胶凝体系的水化产物主要为C-A-S-H凝胶与钙矾石;三元胶凝体系表现出较高的膨胀率,但在2 d后体积变化趋于稳定;界面过渡区中氢氧化钙的富集与膨胀裂缝造成了高电石渣掺量情况下集料与凝胶间的黏结力下降,使抗压强度下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马梦阳
贺行洋
熊光
李欣懋
龙勇
王福龙
关键词:  二水磷石膏  镍渣  电石渣  微观结构  自收缩    
Abstract: A total solid waste ternary cementing system was prepared by dihydrate phosphogypsum-calcium carbide slag-ferronickel slag. The effect of calcium carbide slag and dihydrate phosphogypsum on the performance of the ternary system was studied. The hydration products, microstructure and elemental composition of the system were analyzed by X-ray diffraction and scanning electron microscopy. The results showed that both dihydrate phosphogypsum and calcium carbide slag could decrease the fluidity of the ternary system. Due to the influence of retarding components such as phosphorus and fluorine in dihydrate phosphogypsum, the setting time of the ternary system was greatly prolonged, and the 3 d compressive strength also decreases, but addition of dihydrate phosphogypsum was conducive to the later strength growth. The incorporation of calcium carbide slag shortens the setting time of ternary system, but reduces the compressive strength of the system. The hydration products of ternary system were mainly C-A-S-H gel and ettringite. The ternary system showed a high expansion rate, but the volume change tended to be stable after 2 d. The enrichment of calcium hydroxide and expansion cracks in the interfacial transition zone leaded to the decrease of the bonding force between aggregates and gels under the condition of high calcium carbide slag content, resulting in the decrease of strength.
Key words:  dihydrate phosphogypsum    ferronickel slag    calcium carbide slag    microstructure    autogenous shrinkage
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TQ172  
基金资助: 湖北省重点研发计划项目(2021BGD014)
通讯作者:  *贺行洋,湖北工业大学土木建筑与环境学院教授,博士研究生导师。1998年武汉工业大学本科毕业,2001年武汉理工大学工学硕士毕业,2004年中国建筑材料科学研究总院工学博士毕业。目前主要从事结构工程与材料、新型低碳建筑材料等方面的研究工作。以第一或通讯作者发表高水平论文100余篇,其中SCI收录74篇、EI收录64篇,中科院一区论文59篇,ESI高被引论文9篇、热点论文1篇;以第一发明人获授权发明专利44项。hxycn@126.com   
作者简介:  马梦阳,2016年7月和2019年7月于湖北工业大学土木工程专业与结构工程专业先后取得工学学士与工学硕士学位,2022年7月于捷克奥斯特拉发技术大学材料科学与工程专业取得哲学博士学位。现为中铁大桥科学研究院桥梁结构健康与安全国家重点实验室工程师。目前主要研究领域为工业固体废弃物资源化利用。发表学术论文10篇(SCI收录),获授权发明专利3项。
引用本文:    
马梦阳, 贺行洋, 熊光, 李欣懋, 龙勇, 王福龙. 二水磷石膏-电石渣-镍铁渣三元胶凝体系的性能与微观结构[J]. 材料导报, 2024, 38(13): 22080048-5.
MA Mengyang, HE Xingyang, XIONG Guang, LI Xinmao, LONG Yong, WANG Fulong. Properties and Microstructure of Dihydrate Phosphogypsum-Calcium Carbide Slag-Ferronickel Slag Ternary System. Materials Reports, 2024, 38(13): 22080048-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080048  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22080048
1 Wang Y, Wang W, Ma M Y, et al. Journal of Building Engineering, 2022, 49, 104046.
2 Balomenos E, Panias D. In Conference:3rd International Slag Valorization Symposium-The transition to sustainable materials management. Leuven, 2013, pp.161.
3 Mistrašinović A M, Wolf A. Separation Science and Technology, 2015, 50(16), 2553.
4 Wang Z J, Ni W, Jia Y, et al. Journal of Non-Crystalline Solids, 2010, 356(31-32), 1554.
5 Rahman M A, Sarker P K, Shiakh F, et al. Construction and Building Materials, 2017, 140, 194.
6 Lemonis N, Tsakiridis P E, Katsiotis N S, et al. Construction and Buil-ding Materials, 2015, 81, 130.
7 Komnitsas K, Zaharaki D, Perdikatsis V. Journal of Materials Science, 2007, 42(9), 3073.
8 Maragkos L, Giannopoulou L, Panias D. Minerals Engineering, 2009, 22(2), 196.
9 Lee N K, Lee H K. Construction Building Materials, 2013, 47, 1201.
10 Yuan X H, Chen W, Lu Z A, et al. Construction and Building Materials, 2014, 66, 422.
11 Cercel J, Adesina A, Das S. Construction Building Materials, 2021, 270, 121457.
12 Jamialahmad M, Steinhagen M H. Developments in Chemical Engineering Mineral Processing, 2000, 8(5-6), 587.
13 Yang J, Ma L P, Liu Hong Pan, et al. Fuel, 2019, 242, 1.
14 Yang J, Wang Fazhou, Liu Z C, et al. Cement Concrete Research, 2019, 118, 25.
15 Zhang J J, Tan H B, He X Y, et al. Construction Building Materials, 2020, 249(17), 118763.
16 Namarak C, Satching P, Tangchirapat W, et al. Construction Building Materials, 2017, 147, 713.
17 Namarak C, Tangchirapat W, Jaturapitakkul C. Cement and Concrete Composites, 2018, 89, 31.
18 Cheng L, Sheng G H, Pi Y L, et al. Bulletin of the Chinese Ceramic Society, 2021, 24(4), 40 (in Chinese).
程麟, 盛广宏, 皮艳灵, 等. 硅酸盐通报, 2021, 24(4), 40.
19 Zhang B L, Tan H B, Ma B G, et al. Construction and Building Materials, 2017, 157, 34.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[7] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[8] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[9] 朱德举, 初开丹, 郭帅成, 史才军. 基于海水海砂混凝土真实孔溶液浸泡环境下BFRP筋拉伸性能的退化[J]. 材料导报, 2024, 38(11): 23030043-8.
[10] 任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
[11] 龚翱翔, 徐驰, 安瞻, 佟振峰. 15-15Ti ODS奥氏体钢晶粒组织与纳米粒子的透射电镜表征[J]. 材料导报, 2024, 38(10): 23010111-6.
[12] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[13] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[14] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[15] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed