Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24010105-9    https://doi.org/10.11896/cldb.24010105
  金属与金属基复合材料 |
TiFe基储氢合金活化及电化学性能研究进展
孙丽丽1,2, 关宁1,2, 王勇1,2,*, 李永存1,2
1 东北石油大学机械科学与工程学院,黑龙江 大庆 163318
2 黑龙江省石油石化多相介质处理及污染防治重点实验室,黑龙江 大庆 163318
Research Progress on Activation and Electrochemistry Property of TiFe Based Hydrogen Storage Alloys
SUN Lili1,2, GUAN Ning1,2, WANG Yong1,2,*, LI Yongcun1,2
1 School of Mechanical Science and Engineering, Northest Petroleum University, Daqing 163318, Heilongjiang, China
2 Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, China
下载:  全 文 ( PDF ) ( 8649KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 能源危机正在催生新能源迅猛发展,氢是地球上分布广泛的元素之一,因具有高热值、丰富的来源以及环保特性而被认为是理想的次生能源。随着新能源汽车行业的快速发展,燃料电池技术,特别是镍-氢(Ni-MH)燃料电池,已成为研究的热点。在各种储氢材料中,TiFe基合金因其低成本和高储氢容量等特点备受青睐,也作为Ni-MH燃料电池的负极材料成为现代研究的焦点。TiFe基合金属于AB型储氢合金的典型代表,具有潜在的高理论储氢容量,而且在室温下表现出良好的可逆吸放氢性能。然而,TiFe基合金的应用面临一些挑战。首先,合金的激活过程要求极端条件,这增加了制备的复杂性。其次,合金在吸放氢过程中容易受到毒化作用的影响,这可能降低其性能。最后,合金的吸放氢动力学性质的波动也可能对其在电化学应用中的性能产生不利影响。这些问题限制了TiFe基合金在商业化应用中的进一步发展。
单元素合金化或多元素合金化可以有效改变TiFe基合金的成分布局和晶格结构,优化储氢性能,包括提高活化动力学、增加储氢容量以及优化吸放氢动力学,还可以显著提高合金的电化学综合性能,包括最大充放电容量、高倍率放电性能及循环稳定性等。制备工艺中的铸造法和球磨法等同样可以增加合金的储氢活性,显著提高其吸放氢动力学性能,进而提升电化学充放电容量。表面改性的方法优化了合金的微观结构和接触位点,从而提高了储氢性能和循环寿命,使合金的电化学充放电过程更稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙丽丽
关宁
王勇
李永存
关键词:  储氢合金  TiFe基合金  活化性能  电化学性能    
Abstract: The energy crisis is giving rise to the rapid development of new energy. Hydrogen is one of the widely distributed elements on earth, and is considered an ideal secondary energy source due to its high calorific value, abundant sources, and environmental characteristics. With the rapid growth of the new energy vehicle industry, fuel cell technology, especially nickel hydrogen (Ni-MH) fuel cells, has become a hot research. Among various hydrogen storage materials, TiFe based alloys are highly favored due to their low cost and high hydrogen storage capacity, and have become a focus of modern research as negative electrode materials for nickel hydrogen fuel cells. TiFe based alloys are a typical represen-tative of AB type hydrogen storage alloys, with potential high theoretical hydrogen storage capacity, and exhibit good reversible hydrogen absorption and desorption performance at room temperature. However, the application of TiFe based alloys faces some challenges. Firstly, the activation process of alloys requires extreme conditions, which increases the complexity of preparation. Secondly, alloys are susceptible to poisoning during hydrogen absorption and desorption, which may reduce their performance. Finally, fluctuations in the hydrogen absorption and desorption kinetics of alloys may also have adverse effects on their performance in electrochemical applications. These issues limit the further development of TiFe based alloys in commercial applications.
Single element alloying or multi-element alloying can effectively change the composition layout and lattice structure of TiFe based alloys, optimize hydrogen storage performance, including improving activation kinetics, increasing hydrogen storage capacity, and optimizing hydrogen absorption and desorption kinetics. It can also significantly improve the electrochemical comprehensive performance of the alloy, including maximum discharge capacity, high rate discharge, and cycle stability. The casting method and ball milling method used in the preparation process can also increase the hydrogen storage activity of the alloy, significantly improve its hydrogen absorption and desorption kinetic performance, and thus improve the electrochemical charging and discharging capacitance. The surface modification method optimizes the microstructure and contact sites of the alloy, thereby improving hydrogen storage performance and cycle life, and making the electrochemical charging and discharging process of the alloy more stable.
Key words:  hydrogen storage alloy    TiFe based alloy    activity property    electrochemical performance
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TG174  
基金资助: 黑龙江省自然科学基金(LH2023E016)
通讯作者:  *王勇,博士,教授、博士研究生导师,主要从事材料腐蚀与防护方面的研究。wangyongsll@163.com   
作者简介:  孙丽丽,博士,副教授,主要从事多相流数值模拟及材料损伤机理研究。
引用本文:    
孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
SUN Lili, GUAN Ning, WANG Yong, LI Yongcun. Research Progress on Activation and Electrochemistry Property of TiFe Based Hydrogen Storage Alloys. Materials Reports, 2025, 39(4): 24010105-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010105  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24010105
1 Mahesh A, Sandhu K S. Renewable and Sustainable Energy Reviews, 2015, 52, 1135.
2 Moriarty P, Honnery D. International Journal of Hydrogen Energy, 2007, 32(12), 1616.
3 Liu Y, Pan H, Gao M, et al. Journal of Materials Chemistry, 2011, 21(13), 4743.
4 Young K, Nei J. Materials, 2013, 6(10), 4574.
5 Rincón R A, Heydenrych G. Batteries & Supercaps, 2018, 1(1), 3.
6 Palacín M R, de Guibert A. Science, 2016, 351(6273), 1253292.
7 Dematteis E M, Berti N, Cuevas F, et al. Materials Advances, 2021, 2(8), 2524.
8 Züchner H, Bilitewski U, Kirch G. Journal of the Less Common Metals, 1984, 101, 441.
9 Abrashev B, Spassov T, Bliznakov S, et al. International Journal of Hydrogen Energy, 2010, 35(12), 6332.
10 Reilly J J, Wiswall R H. Inorganic Chemistry, 1974, 13(1), 218.
11 Van der Kraan A M, Buschow K H J. Physica B+C, 1986, 138(1-2), 55.
12 Ko W S, Park K B, Park H K. Journal of Materials Science & Technology, 2021, 92, 148.
13 Gao Jinliang, Yuan Zeming, Shang Hongwei, et al. Metallic Functional Materials, 2016, 23(1), 1 (in Chinese).
高金良, 袁泽明, 尚宏伟, 等. 金属功能材料, 2016, 23(1), 1.
14 Nagar R, Srivastava S, Hudson S L, et al. Solar Compass, 2023, 5, 100033.
15 Mohammadi A, Ikeda Y, Edalati P, et al. Acta Materialia, 2022, 236, 118117.
16 Floriano R, Zepon G, Edalati K, et al. International Journal of Hydrogen Energy, 2020, 45(58), 33759.
17 Liu H, Zhang J, Sun P, et al. Journal of Energy Storage, 2023, 68, 107772.
18 Dematteis E M, Dreistadt D M, Capurso G, et al. Journal of Alloys and Compounds, 2021, 874, 159925.
19 Jain P, Gosselin C, Huot J. International Journal of Hydrogen Energy, 2015, 40(47), 16921.
20 Gosselin C, Huot J. Materials, 2015, 8(11), 7864.
21 Lee S M, Perng T P. International Journal of Hydrogen Energy, 1994, 19(3), 259.
22 Kumar S, Tiwari G P, Sonak S, et al. Energy, 2014, 75, 520.
23 Patel A K, Duguay A, Tougas B, et al. International Journal of Hydrogen Energy, 2020, 45(1), 787.
24 Li C, Gao X, Liu B, et al. International Journal of Hydrogen Energy, 2023, 48(6), 2256.
25 Shen R, Pu C, Xu X, et al. Metals, 2020, 10(12), 1574.
26 Yuan Z, Zhen Q I, Zhai T, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(10), 3087.
27 Sujan G K, Pan Z, Li H, et al. Critical Reviews in Solid State and Materials Sciences, 2020, 45(5), 410.
28 Zhang Y, Li C, Yuan Z, et al. Journal of Iron and Steel Research International, 2022, 29(4), 537.
29 Shang Y, Liu S, Liang Z, et al. Communications Materials, 2022, 3(1), 101.
30 Barale J, Dematteis E M, Capurso G, et al. International Journal of Hydrogen Energy, 2022, 47(69), 29866.
31 Emami H, Edalati K, Matsuda J, et al. Acta Materialia, 2015, 88, 190.
32 Yuan Z, Sui Y, Yuan Q, et al. International Journal of Hydrogen Energy, 2023, 48(30), 11340.
33 Huang Hongxia, Huang Kelong, Liu Suqin. New Chemical Materials, 2008, 36 (11), 27 (in Chinese).
黄红霞, 黄可龙, 刘素琴. 化工新型材料, 2008, 36(11), 27.
34 Zhu Haiyan, Chen Changpin, Wu Jun, et al. Rare Metals, 1991, 15(3), 189 (in Chinese).
朱海岩, 陈长聘, 吴军, 等. 稀有金属, 1991, 15(3), 189.
35 Davids M W, Lototskyy M, Nechaev A, et al. International Journal of Hydrogen Energy, 2011, 36(16), 9743
36 Heller E M B, Vredenberg A M, Boerma D O. Applied Surface Science, 2006, 253(2), 771.
37 Suda T, Ohkawa M, Sawada S, et al. Materials Transactions, 2002, 43(11), 2703.
38 Kwon H G, Park K B, Fadonougbo J O, et al. Materials Chemistry and Physics, 2023, 309, 128362.
39 Pande C S, Pick M A, Sabatini R L. Scripta Metallurgica, 1980, 14(8), 899.
40 Zhang T B, Yang X W, Li J S, et al. Journal of Power Sources, 2012, 202, 217.
41 Busch G, Schlapbach L, Stucki F, et al. International Journal of Hydrogen Energy, 1979, 4(1), 29.
42 Fischer P, Hälg W, Schlapbach L, et al. Materials Research Bulletin, 1978, 13(9), 931.
43 Matsumoto T, Amano M. Scripta Metallurgica, 1981, 15(8), 879.
44 Schober T. Journal of the Less Common Metals, 1983, 89(1), 63.
45 Park K B, Fadonougbo J O, Bae J S, et al. Metals, 2022, 12(12), 2093.
46 Peng C, Liu Q, Lv P, et al. International Journal of Hydrogen Energy, 2023, 48(97), 38374.
47 Ha T, Kim J H, Sun C, et al. Nano Energy, 2023, 112, 108483.
48 Ahn H J, Lee S M, Jai-Young L. Journal of the Less Common Metals, 1988, 142, 253.
49 Edalati K, Bachmaier A, Beloshenko V A, et al. Materials Research Letters, 2022, 10(4), 163.
50 Révész Á, Gajdics M. Energies, 2021, 14(4), 819.
51 Edalati K, Matsuda J, Iwaoka H, et al. International Journal of Hydrogen Energy, 2013, 38(11), 4622.
52 Miyamura H, Takada M, Kikuchi S. Journal of Alloys and Compounds, 2005, 404, 675.
53 Jiang W, Chen Y, Hu M, et al. Journal of Alloys and Compounds, 2021, 887, 161381.
54 Shang H, Zhang Y, Li Y, et al. International Journal of Hydrogen Energy, 2018, 43(3), 1691.
55 Liu Fuchen, Han Zhonggang, Yuan Zeming, et al. Metallic Functional Materials, 2022, 29(5), 90 (in Chinese).
刘芙辰, 韩忠刚, 袁泽明, 等. 金属功能材料, 2022, 29(5), 90.
56 Xu Qingfei, Zhai Tingting, Han Zhonggang, et al. Metallic Functional Materials, 2021, 28(3), 42 (in Chinese).
徐庆飞, 翟亭亭, 韩忠刚, 等. 金属功能材料, 2021, 28(3), 42.
57 Jurczyk M. Journal of Materials Science, 2004, 39, 5271.
58 Hosni B, Khaldi C, ElKedim O, et al. Journal of Alloys and Compounds, 2019, 781, 1159.
59 Shang H, Zhang Y, Li Y, et al. Renewable Energy, 2019, 135, 1481.
60 Jankowska E, Makowiecka M, Jurczyk M. Journal of Alloys and Compounds, 2005, 404, 691.
61 Edalati K, Matsuda J, Yanagida A, et al. International Journal of Hydrogen Energy, 2014, 39(28), 15589.
62 Zhu Y, Yang Y, Wei L, et al. Journal of Alloys and Compounds, 2012, 520, 207.
63 Zeaiter A, Chapelle D, Cuevas F, et al. Powder Technology, 2018, 339, 903.
64 Jankowska E, Jurczyk M. Journal of Alloys and Compounds, 2004, 372(1-2), L9.
65 Shang H, Li Y, Zhang Y, et al. International Journal of Hydrogen Energy, 2023, 48(72), 28091.
66 Miyamura H, Takada M, Hirose K, et al. Journal of Alloys and Compounds, 2003, 356, 755.
67 Spodaryk M, Shcherbakova L, Sameljuk A, et al. Journal of Alloys and Compounds, 2015, 621, 225.
68 Zhang H, Bao L, Qi J, et al. Renewable Energy, 2020, 157, 1053.
69 Zhang H, Fu L, Xuan W, et al. Renewable Energy, 2020, 145, 1572.
70 Han Z, Zhai T, Yuan Z, et al. Materials Today Communications, 2023, 35, 105613.
71 Shang H, Zhang Y, Gao J, et al. International Journal of Hydrogen Energy, 2022, 47(2), 1036.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[3] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[4] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[5] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[6] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[7] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[8] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[9] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[10] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[11] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[12] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[13] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[14] 邓安强, 罗永春, 袁远, 康晓燕, 周健飞, 谢云丁, 沈秉金, 王悦. 超点阵结构储氢合金研究进展[J]. 材料导报, 2023, 37(17): 22040141-9.
[15] 刘宏亮, 王月莹, 沙剑春, 杨炳林, 贾志明, 王鑫, 高思睿, 何立子. 固溶温度对Al-Mg-Sn-Ga-Bi合金显微组织及电化学性能的影响[J]. 材料导报, 2023, 37(14): 21120010-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed