Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22040363-11    https://doi.org/10.11896/cldb.22040363
  高分子与聚合物基复合材料 |
硅胶载体的制备及在聚烯烃催化剂领域中的应用
张玉金1,†, 杨琦2,†, 张瑞2, 高宇新2, 拜永孝1,*
1 兰州大学材料与能源学院软物质与先进功能材料研究所,兰州 730000
2 中国石油天然气股份有限公司大庆化工研究中心,黑龙江 大庆 163714
Preparation of Silica Gel Supports for Polyolefin Catalysts Application
ZHANG Yujin1,, YANG Qi2,, ZHANG Rui2, GAO Yuxin2, BAI Yongxiao1,*
1 Institute of Soft Matter and Advanced Functional Materials, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
2 PetroChina Daqing Petrochemical Research Center, Daqing 163714, Heilongjiang, China
下载:  全 文 ( PDF ) ( 7242KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 催化剂及催化技术的发展是聚烯烃产业技术进步的核心。硅胶作为聚烯烃催化剂常用的载体材料,在催化剂的合成及聚烯烃树脂的制备领域发挥着重要的作用。近年来,关于硅胶负载聚烯烃催化剂的研究已陆续发表。本文综述了硅胶载体的结构、制备方法以及硅胶载体与聚烯烃催化剂(Ziegler-Natta催化剂、茂金属催化剂、后过渡金属催化剂及铬基催化剂)负载化的研究进展,并介绍了催化剂的制备机理、优点及应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张玉金
杨琦
张瑞
高宇新
拜永孝
关键词:  硅胶  催化剂  载体  聚烯烃    
Abstract: The evolution of catalyst and catalyst technologies is essential to the technological progress of the polyolefin industry. Silica gel, a common carrier material, plays an important role in catalyst synthesis and the industrial production of polyolefin plastics. Recently, several studies on the status and trend of silica gel-supported polyolefin catalystshave been published. This paper presents the silica gel support structure, preparation methods, and the research progress of silica gel-supported polyolefin catalysts (such as Ziegler-Natta, metallocene, post-transition metal, and chromium-based catalysts). Furthermore, the preparation mechanism, advantages and applications of catalysts are introduced.
Key words:  silica gel    catalyst    carrier    polyolefin
发布日期:  2024-01-16
ZTFLH:  TQ317  
基金资助: 中国石油天然气股份有限公司大庆化工研究中心项目(DQZX-KY-20-006);兰州市科技计划项目(2021-1-44)
通讯作者:  拜永孝,兰州大学材料与能源学院教授、博士研究生导师。1997年于南京理工大学化学化工学院工业分析专业本科毕业,毕业后在中国石油天然气股份有限公司兰州化工研究中心工作。2006年于兰州大学化学化工学院高分子化学与物理专业博士毕业,毕业后在兰州大学工作至今。长期致力于聚烯烃催化剂载体和催化材料、聚合物基复合材料等领域的基础研究、技术开发和工程应用方面的研究工作。在ACS Applied Materials & Interfaces、Composites Science and Technology、Chemical Communications、Nanoscale、The Journal of Physical Chemistry C、Composite Part A、《材料导报》《化学通报》等期刊上发表了60余篇研究论文,30余项中国发明专利获得授权。baiyx@lzu.edu.cn   
作者简介:  †共同第一作者
张玉金,2017年6月、2020年6月分别于江苏理工学院和兰州大学获得工学学士学位和硕士学位。现为兰州大学材料与能源学院博士研究生,在拜永孝教授的指导下进行研究。目前主要研究领域为聚合物基复合材料。发表SCI论文4篇,包括ACS Applied Materials & Interfaces、Advanced Materials Interfaces、ACS Applied Nano Material 等,4项中国发明专利获得授权。
杨琦,2011年6月、2014年6月分别于四川大学和东北石油大学获得工学学士学位和硕士学位,现工作于中国石油天然气股份有限公司大庆化工研究中心。目前主要研究领域为聚烯烃催化剂及新产品开发等。
引用本文:    
张玉金, 杨琦, 张瑞, 高宇新, 拜永孝. 硅胶载体的制备及在聚烯烃催化剂领域中的应用[J]. 材料导报, 2024, 38(1): 22040363-11.
ZHANG Yujin, YANG Qi, ZHANG Rui, GAO Yuxin, BAI Yongxiao. Preparation of Silica Gel Supports for Polyolefin Catalysts Application. Materials Reports, 2024, 38(1): 22040363-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040363  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22040363
1 Stalzer M M, Delferro M, Marks T J. Catalysis Letters, 2015, 145, 3.
2 Zhang W, Pauly T R, Pinnavaia T J. Chemistry of Materials, 1997, 9, 2491.
3 Lin W, Chen J, Sun Y, et al. Journal of the Chemical Society, Chemical Communications, 1995(23), 2367.
4 Huo Q, Margolese D I, Stucky G D. Chemistry of Materials, 1996, 8, 1147.
5 Yao P H. Study on silica and silica-supported metallocene catalyst for ethylene polymerization. Ph. D. Thesis, Northwest Normal University, China, 2009 (in Chinese).
姚培洪. 硅胶及其负载茂金属催化剂的乙烯聚合研究. 博士学位论文, 西北师范大学, 2009.
6 Ying J Y, Mehnert C P, Wong M S. Angewandte Chemie International Edition, 1999, 38, 56.
7 Attard G S, Glyde J C, Göltner C G. Nature, 1995, 378, 366.
8 Schüth F. Surface Science and Catalysis, 2004, 148, 1.
9 Alothman Z A. Materials, 2012, 5(12), 2874.
10 Wang X Y, Yang L Y, Diao X H. Journal of Hebei University of Science and Technology, 2000, 21(4), 23(in Chinese).
王小永, 杨兰英, 刁锡华. 河北科技大学学报, 2000, 21(4), 23.
11 Hu W J, Liu J, He Y P, et al. Petroleum Processing and Petrochemicals, 2019, 50(12), 38(in Chinese).
胡维军, 刘俊, 何彦平, 等. 石油炼制与化工, 2019, 50(12), 38.
12 Sun S H, Wang G, Wang Y L. Industrial Catalysis, 2001, 9(1), 62(in Chinese).
孙素华, 王纲, 王永林. 工业催化, 2001, 9(1), 62.
13 Lévy A, Villa M D A, Gaudin J, et al. Journal of Physics: Conference Series, 2020,2020, 1412.
14 Wongwaiwattanakul P, Jongsomjit B. Catalysis Communications, 2008, 10, 118.
15 Sano T, Doi K, Hagimoto H, et al. Chemical Communications, 1999(8), 733.
16 Sano T, Hagimoto H, Jin J, et al. Macromolecular Rapid Communications, 2000, 21, 1191.
17 Sano T, Hagimoto H, Sumiya S, et al. Microporous and Mesoporous Materials, 2001, 44-45, 557.
18 Kumkaew P, Wanke S E, Praserthdam P, et al. Journal of Applied Polymer Science, 2003, 87, 1161.
19 Bashir M A, Monteil V, Boisson C, et al. AIChE Journal, 2017, 63, 4476.
20 Smit M, Zheng X, Loos J, et al. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43, 2734.
21 Tran D, Zhang C, Choi K Y. Macromolecular Reaction Engineering, 2022, 16, 2200020.
22 Yoo H J, Ko Y S. Korean Journal of Chemical Engineering, 2022, 39, 1762.
23 Cui Kun. A silica supported non-metallocene olefin polymerization catalyst and its behavior in olefin polymerization. Master’s Thesis, Donghua University, China, 2007 (in Chinese)
崔崑. 硅胶负载的非茂金属烯烃聚合催化剂及其在烯烃聚合中的应用. 硕士学位论文, 东华大学, 2007.
24 Zou C, Si G, Chen C. Nature Communications, 2022, 13, 1954.
25 Culver D B, Dorn R W, Venkatesh A, et al. ACS Central Science, 2021, 7, 1225.
26 Boussie T R, Coutard C, Turner H, et al. Angewandte Chemie International Edition, 1998, 37, 3272.
27 Kelly J M. Journal of Macromolecular Science-polymer Reviews, 2002, C42, 355.
28 Padmanabhan S, Sarma K R, Sharma S. Industrial & Engineering Che-mistry Research, 2009, 48, 4866.
29 Zhou Y, He X, Fu T, et al. Journal of Organometallic Chemistry, 2019, 888, 1.
30 Hammawa H, Wanke S E. Journal of Applied Polymer Science, 2007, 104, 514.
31 Kasi R M, Coughlin E B. Organometallics, 2003, 22, 1534.
32 Burkett S L, Soukasene S, Milton K L, et al. Chemistry of Materials, 2005, 17, 2716.
33 Huang P, Liu W, He Z, et al. Science China Chemistry, 2018, 61, 1187.
34 Beck C, Mallat T, Bürgi T, et al. Journal of Catalysis, 2001, 204, 428.
35 Gao C, Yan D. Progress in Polymer Science, 2004, 29, 183.
36 Fen L X, Ge C X, Wang L. Journal of Molecular Catalysis, 2021(3), 403 (in Chinese).
封麟先, 葛从辛, 王立, 分子催化, 2021(3), 403.
37 Bernardes A A, Zarth C S P, Gossler F S, et al. Journal of Applied Polymer Science, 2021, 138, 49961.
38 Zapata P A, Quijada R, Lieberwirth I, et al. Applied Catalysis A: General, 2011, 407, 181.
39 Johnson L K, Killian C M, Brookhart M. Journal of the American Chemical Society, 1995, 117, 6414.
40 Younkin T R, Connor E F, Henderson J I, et al. Science, 2000, 287, 460.
41 Held A, Bauers F M, Mecking S. Chemical Communications, 2000(4), 301.
42 Svejda S A, Johnson L K, Brookhart M. Journal of the American Chemical Society, 1999, 121, 10634.
43 Preishuber-Pflugl P, Brookhart M. Macromolecules, 2002, 35, 6074.
44 Hu Y, Hu W, Wang H. Journal of Wuhan University of Technology-Materials Science Edition, 2010, 25, 260.
45 Alobaidi F, Ye Z, Zhu S. Macromolecular Chemistry and Physics, 2003, 204, 1653.
46 Hogan J P. Journal of Polymer Science Part A-1: Polymer Chemistry, 1970, 8, 2637.
47 Augustine S M, Blitz J P. Journal of Catalysis, 1996, 161, 641.
48 Qiu P, Li X, Zhang S, et al. Asia-Pacific Journal of Chemical Enginee-ring, 2009, 4, 660.
49 Liu B, Fang Y, Terano M. Journal of Molecular Catalysis A: Chemical, 2004, 219, 165.
50 Mcdaniel M P. Journal of Catalysis, 1982, 76, 37.
51 Mohamadnia Z, Ahmadi E, Nekoomanesh M, et al. Polymer International, 2010, 59, 945.
52 Li L, Hao A, Cheng R, et al. Frontiers of Chemical Science and Engineering, 2011, 5, 89.
53 Karol F J, Karapinka G L, Wu C, et al. Journal of Polymer Science Part A-1: Polymer Chemistry, 1972, 10, 2621.
54 Ikeda H, Monoi T, Sasaki Y. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41, 365.
55 Cann K, Apecetche M, Zhang M. Macromolecular Symposia, 2004, 213, 29.
[1] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[2] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[3] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[4] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[5] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[6] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[7] 徐文杰, 刘丹, 屈德宇, 李曦. 两电子氧还原电催化合成过氧化氢的研究进展[J]. 材料导报, 2023, 37(24): 22030010-12.
[8] 王宗乾, 申佳锟, 李禹, 李长龙, 王鹏. g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能[J]. 材料导报, 2023, 37(22): 22030277-7.
[9] 梁李斯, 马洪月, 郭文龙, 张宇, 弥晗, 张自恒, 邢相栋. 锰基低温NH3-SCR催化剂脱除NOx的研究综述[J]. 材料导报, 2023, 37(22): 22010173-13.
[10] 朱昌盛, 赵顺征, 唐晓龙, 高凤雨, 于庆君, 刘俊, 周远松, 温燕凤, 易红宏. 铝基催化剂催化水解羰基硫研究进展[J]. 材料导报, 2023, 37(20): 22040149-8.
[11] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[12] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[13] 韦秋红, 褚海亮, 夏永鹏, 邱树君, 温鑫, 徐芬, 孙立贤. 氨硼烷水解制氢催化剂的研究进展[J]. 材料导报, 2023, 37(17): 21110116-12.
[14] 汪尔文, 张兵, 李欣明, 江园, 吴永红, 王同华. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应[J]. 材料导报, 2023, 37(17): 22010107-5.
[15] 林路贺, 邹爱华, 康志兵, 郭浩, 汪杰. Co-Ni-Mo三元纳米材料的合成及催化氨硼烷制氢的研究[J]. 材料导报, 2023, 37(16): 21120005-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed