Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23050200-18    https://doi.org/10.11896/cldb.23050200
  高分子与聚合物基复合材料 |
天然高分子多糖在药物传递领域中的应用
刘晨爽1, 田野1, 盛显良2, 斯琴塔娜2, 张玉辉2,*
1 内蒙古农业大学材料科学与艺术设计学院,呼和浩特 010018
2 内蒙古农业大学理学院,呼和浩特 010018
Application of Natural Polysaccharides in Drug Delivery
LIU Chenshuang1, TIAN Ye1, SHENG Xianliang2, XIN Siqintana2, ZHANG Yuhui2,*
1 College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
2 College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
下载:  全 文 ( PDF ) ( 29191KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 天然高分子多糖因具有良好的生物相容性、可降解性、易修饰性和无毒等特点而成为制备超分子纳米药物载体的极佳选择之一。在载体构筑过程中,二硫键、硼酸酯键和碳氮键等动态共价键的引入不仅提高了药物的负载量,还增强了纳米载体的生物相容性,并为载体提供了刺激响应位点,使其在药物传递过程中可以通过pH、光和酶等刺激实现药物的靶向释放,使药物传递体系更加智能、便捷和可控。   本文从天然高分子多糖类型、动态共价键类型、刺激响应类型以及天然高分子多糖载体的临床适应症类型这四个方面综述了天然高分子多糖在药物传递领域中的应用,并对其当前面临的主要挑战和未来的发展趋势进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晨爽
田野
盛显良
斯琴塔娜
张玉辉
关键词:  天然高分子多糖  药物载体  动态共价键  刺激响应    
Abstract: Natural polysaccharides are ideal materials for the preparation of nano-drug carrier systems because of their intrinsic characteristics: good biocompatibility, biodegradability, ease of modification and low toxicity. The incorporation of dynamic covalent bonds such as disulfide bonds, boronate bonds, C-N bonds are a versatile tool for the construction of drug carriers, which can increase drug loading, enhance the biocompatibility, and provide the stimulus-responsive sites. In this regard, many stimuli, such as pH, light and enzyme could be exploited as triggers for drug release, thus making the drug delivery system more intelligent, convenient and controllable. In this paper, the applications of natural polysaccharides in drug delivery systems are reviewed from four aspects: the natural polysaccharides types, dynamic covalent bonds types, stimulus-response types and the clinical indication types of natural polysaccharides. The main challenges and future advances in this field are also detailed.
Key words:  natural polysaccharides    drug carrier    dynamic covalent bonds    stimulus-responsive
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  O636  
基金资助: 国家自然科学基金(52263013);内蒙古自治区自然科学基金(2021MS02023);内蒙古农业大学青年教师科研能力提升专项(BR220140);内蒙古自治区草原英才人才工程项目(DC2000000745);内蒙古农业大学高层才人才启动项目(NDGCC2016-21)
通讯作者:  *张玉辉,通信作者,内蒙古农业大学理学院副教授、博士研究生导师。2011—2016年在南开大学攻读博士学位,师从刘育教授,2016年进入内蒙古农业大学工作。主要从事刺激响应性药物载体的构筑及应用研究,发表SCI论文10余篇,授权发明专利5项,出版专著和教材4部,包括Chemical Communications、Chinese Chemical Letters、Organic Chemistry Frontiers等。yh_zhangyh@126.com   
作者简介:  刘晨爽,2019年6月毕业于北京交通大学海滨学院获得工学学士学位。现为内蒙古农业大学材料科学与艺术设计学院硕士研究生,在盛显良教授和张玉辉副教授的指导下进行研究。目前主要从事刺激响应性多糖药物载体的构筑及性能研究。
引用本文:    
刘晨爽, 田野, 盛显良, 斯琴塔娜, 张玉辉. 天然高分子多糖在药物传递领域中的应用[J]. 材料导报, 2024, 38(19): 23050200-18.
LIU Chenshuang, TIAN Ye, SHENG Xianliang, XIN Siqintana, ZHANG Yuhui. Application of Natural Polysaccharides in Drug Delivery. Materials Reports, 2024, 38(19): 23050200-18.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050200  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23050200
1 Chamundeeswari M, Jeslin J, Verma M L, Environmental Chemistry Letters, 2019, 17(2), 849.
2 Zhang H, Fan T J, Chen W, et al. Bioactive Materials, 2020, 5(4), 1071.
3 Salara A R, Jafari S M, Tong Q, et al. Advances in Colloid and Interface Science, 2020, 284, 102251.
4 Huang X B, Mu N, Ding Y F, et al. Acta Biomaterialia, 2022, 147, 356.
5 Liu Y, Sun Y, Zhang W Q. Chinese Journal of Chemistry, 2022, 40(8), 965.
6 Asgari S, Pourjavadi A, Hosseini S H, et al. Materials Science & Engineering C-Materials for Biological Applications, 2020, 109, 110517.
7 Lei S, Zhao F, Zhang J, et al. Analytical Chemistry, 2022, 94(23), 8399.
8 Qiu X L, Li Q L, Zhou Y, et al. Chemical Communications, 2015, 51(20), 4237.
9 Rehman A, Ahmad T, Aadil R M, et al. Trends in Food Science & Technology, 2019, 90, 35.
10 Shukla R K, Tiwari A. Carbohydrate Polymers, 2012, 88(2), 399.
11 Sun Y Z, Jing X D, Ma X L, et al. International Journal of Molecular Sciences, 2020, 21(23), 9159.
12 Zhou T T, Li J G, Liu P. Colloids and Surfaces A-physicochemical and Engineering Aspects, 2018, 553, 180.
13 Liu Z H, Jiao Y P, Wang Y F, et al. Advanced Drug Delivery Reviews, 2008, 60(15), 1650.
14 Fang X C, Niu J B, Ji C F. Chinese Pharmaceutical Journal, 2022, 57(17), 1406 (in Chinese).
方星辰, 牛俊博, 汲晨锋. 中国药学杂志, 2022, 57(17), 1406.
15 Bianculli R H, Mase J D, Schulz M D. Macromolecules, 2020, 53(21), 9158.
16 Kou T T, Faisal M, Song J, et al. Critical Reviews in Food Science and Nutrition, 2022, 64(1), 1.
17 Su L, Feng Y L, Wei K C, et al. Chemical Reviews, 2021, 121(18), 10950.
18 Yu K, Han X D, He L H, et al. Materials Reports, 2019, 33(3), 510(in Chinese).
于坤, 韩晓东, 何丽华, 等. 材料导报, 2019, 33(3), 510.
19 Mukherjee S, Jana S, Khawas S, et al. Carbohydrate Polymers, 2022, 289, 119299.
20 Jiang J X, Zhang L P, Xu W, et al. Journal of Forestry Engineering, 2022, 7(6), 12(in Chinese).
蒋建新, 张乐平, 徐伟, 等. 林业工程学报, 2022, 7(6), 12.
21 Mukherjee S, Bera K, Jana S. International Journal of Biological Macromolecules, 2021, 167, 587.
22 Strasser R, Seifert G, Doblin M S, et al. Frontiers in Plant Science, 2021, 12, 640919.
23 Su L F, Ou Y H, Feng X, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(4), 3792.
24 Nouri A, Jelkmann M, Khoee S. Biomacromolecules, 2020, 21, 999.
25 Li S J, Xiong Q P, Lai X P, et al. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(2), 237.
26 Yang Y Y, Wang X, Yang F, et al. Advanced Materials, 2018, 30(18), 1707071.
27 Baillie T A. Angewandte Chemie International Edition, 2016, 55(43), 13408.
28 Jin R, Guo X L, Dong L L, et al. Colloids and Surfaces B: Biointerfaces, 2017, 158, 47.
29 Tan C, Xie J H, Zhang X M, et al. Food Hydrocolloids, 2016, 57, 236.
30 Ulrich S. Accounts of Chemical Research, 2019, 52(5), 510.
31 Bruneau M, Bennici S, Brendle J, et al. Journal of Controlled Release, 2019, 294, 355.
32 Geng W C, Sessler J L, Guo D S. Chemical Society Reviews, 2020, 49(8), 2303.
33 Dai X, Du T, Han K. ACS Biomaterials Science & Engineering, 2019, 5, 6342.
34 Low L E, Wu J, Lee J, et al. Controlled Release, 2020, 324, 69.
35 Mi P. Theranostics, 2020, 10(10), 4557.
36 Guo Z Y, Cao X Q, DeLoid G M, et al. Journal of Agricultural and Food Chemistry, 2019, 68(1), 358.
37 Bodnar M, Hartmann J F, Borbely J. Biomacromolecules, 2005, 6(5), 2521
38 Calvo P, Remunan-Lopez C, Vila-Jato J L, et al. Journal of Applied Polymer Science, 1997, 63(125), 125.
39 Ribeiro E F, de Barros-Alexandrino T T, Assis O B G, et al. Carbohydrate Polymers, 2020, 250, 116878.
40 Wang J, Feng L, Yu Q, et al. Biomacromolecules, 2020, 22(2), 534.
41 Ding Y F, Wei J, Li S, et al. ACS Applied Materials & Interfaces, 2019, 11(32), 28665.
42 Niu S W, Williams G R, Wu J R, et al. Journal of Nanobiotechnology, 2019, 17(1), 1.
43 Qi X L, Qin J Y, Fan Y C, et al. Journal of Biomedical Nanotechnology, 2016, 12, 667.
44 Li T, Yang J, Liu R, et al. International Journal of Biological Macromolecules, 2019, 126, 68.
45 Zhao J, Li J Q, Jiang Z L, et al. International Journal of Biological Macromolecules, 2020, 154, 339.
46 Mai Q, Shen S Q, Liu Y F, et al. Materials Letters, 2019, 238, 143.
47 Hu H Y, Qi Q, Dong Z Y, et al. Carbohydrate Polymers, 2020, 241, 116335.
48 Schanté C E, Zuber G, Herlin C, et al. Carbohydrate Polymers, 2011, 85(3), 469.
49 Liao Y H, Jones S A, Forbes B, et al. Drug Delivery, 2005, 12(6), 327.
50 Zamboni F, Okoroafor C, Ryan M P, et al. Carbohydrate Polymers, 2021, 260, 117803.
51 Gheran C V, Rigaux G, Callewaert M, et al. Nanomaterials, 2018, 8(4), 201.
52 Huang L G, Huang H L. Journal of Controlled Release 2018, 278, 122.
53 Zhang Y, Xu J. Royal Society Open Science, 2018, 5, 170986.
54 Wang H, Sun G, Zhang Z, et al. Biomedicine & Pharmacotherapy, 2017, 91, 241.
55 Lim D G, Prim R E, Kang E, et al. International Journal of Pharmaceutics, 2018, 542(1-2), 288.
56 Shu F P, Lv D J, Song X L, et al. RSC Advances, 2018, 8, 6581.
57 Zheng S H, Han J W, Jin Z, et al. Colloids and Surfaces B: Biointerfaces, 2018, 164, 424.
58 Bai Y, Liu C P, Chen D, et al. Carbohydrate Polymers, 2020, 246, 116654.
59 Zhang Y H, Zhang Y M, Sheng X L, et al. Chenmical Communication, 2020, 56(7), 1042.
60 Zhang Y H, Wang L J, Wang J, et al. Chinese Chemical Letters, 2021, 32(6), 1902.
61 Khalikova E, Susi P, Korpela T. Microbiology and Molecular Biology Reviews, 2005, 69(2), 306.
62 Yee E M H, Cirillo G, Brandl M B, et al. Frontiers in Bioengineering and Biotechnology, 2019, 7, 183.
63 Tang Y X, Li Y H, Xu R, et al. Nanoscale, 2018, 10(36), 17265.
64 Wei S K, Xu P C, Yao Z X, et al. Acta Biomaterialia, 2021, 124, 205.
65 Chen Y, Gao Y J, Li Y C, et al. Journal of Materials Chemistry B, 2019, 7(3), 460.
66 Zaitseva O, Khudyakov A, Sergushkina M, et al. Fitoterapia, 2020, 146, 104676
67 Khotimchenko M. International Journal of Biological Macromolecules, 2020, 158, 1110.
68 Richter A R, Carneiro M J, de Sousa N A D, et al. International Journal of Biological Macromolecules, 2020, 152, 492.
69 Chauhan S S, Shetty A B, Hatami E, et al. Pharmaceutics, 2020, 12(3), 285.
70 Meng Y J, Yang S Y, Guo Z W, et al. International Journal of Biological Macromolecules, 2020, 154, 413.
71 Liu Y X, Zheng D, Ma Y Y, et al. ACS Biomaterials Science & Engineering, 2017, 4(5), 1641.
72 Li D Q, Wang S Y, Meng Y G, et al. International Journal of Biological Macromolecules, 2020, 164, 4566.
73 Goh C H, Heng P W S, Chan L W. Carbohydrate Polymers, 2012, 88(1), 1.
74 Kumar S, Prakash C, Gupta S K, et al. Proceedings of the National Academy of Sciences, India. Section B, 2017, 87, 243.
75 Wang J, Jiang F, Xu Q S, et al. RSC Advances, 2016, 6, 87026.
76 Huang J, Huang J L, Li Y, et al. Journal of Agricultural and Food Chemistry, 2021, 69(25), 7064.
77 Dodero A, Alberti S, Gaggero G, et al. RSC Advances, 2016, 6(90), 87026.
78 Zhao Z P, Li Q, Qin X H, et al. Advanced Functional Materials, 2022, 32(24), 2200801.
79 Zheng D X, Ramos-Sebastian A, Jung W S, et al. Composites Part B-Engineering, 2022, 230, 109551.
80 Zhan Y R, Chen P, He X, et al. Biomacromolecules, 2022, 23(12), 5312.
81 Zhao B B, Li L J, Lv X X, et al. Journal of Controlled Release, 2022, 349, 662.
82 Prasher P, Sharma M, Singh S P. Drug Development Research, 2021, 82(2), 145.
83 Builders P F, Arhewoh M I. Starch, 2016, 68(9-10), 864.
84 Alp E, Damkaci F, Guven E, et al. International Journal of Nanomedicine, 2019, 2019(14), 1335.
85 Xu Y B, Zi Y X, Lei J F, et al. Carbohydrate Polymers, 2020, 233, 115858.
86 Luo K, Adra H J, Kim Y R. Carbohydrate Polymers, 2020, 243, 116385.
87 Liu Q, Li F, Ji N, et al. Food Hydrocolloids, 2021, 111, 106253.
88 Ranjbar E, Namazi H, Pooresmaeil M. International Journal of Biological Macromolecules, 2022, 201, 193.
89 He L, Wei W K, Luo Y, et al. Science Bulletin, 2021, 66(10), 1208 (in Chinese).
何柳, 魏文康, 罗雨, 等. 科学通报, 2021, 66(10), 1208.
90 Stubelius A, Lee S, Almutairi A. Accounts of Chemical Research, 2019, 52(11), 3108.
91 Pettignano A, Grijalvo S, Háring M, et al. Chemical Communication, 2017, 53(23), 3350.
92 Wang L J, Sheng X L, Wang J, et al. Chinese Journal of Organic Chemistry, 2021, 41(2), 567 (in Chinese).
王李娟, 盛显良, 王杰, 等. 有机化学, 2021, 41(2), 567.
93 Zheng D D, Chen W, Ruan H T, et al. Chemical Engineering Journal, 2022, 428, 131064.
94 Chen Y, Li H H, Deng Y Y, et al. Acta Biomaterialia, 2017, 51, 374.
95 Fang L, Lin H, Wu Z F, et al. Carbohydrate Polymers, 2020, 234, 115930.
96 Betz S F. Protein Science, 1993, 2(10), 1551.
97 Dombkowski A A, Sultana K Z, Craig D B. Febs Letters, 2014, 588(2), 206.
98 Winne J M, Leibler L, Du Prez F E. Polymer Chemistry, 2019, 10, 6091.
99 Meng F H, Hennink W E, Zhong Z Y. Biomaterials, 2009, 30(12), 2180.
100 Lee M H, Sessler J L, Kim J S. Accounts of Chemical Research, 2015, 48(11), 2935.
101 Guo X, Wang L, Duval K, et al. Advanced Materials, 2018, 30(3), 1705436
102 Yan K, Feng Y C, Gao K, et al. Journal of Colloid and Interface Science, 2022, 606, 1586.
103 Dai X Y, Zhang B, Zhou W L, et al. Biomacromolecules, 2020, 21(12), 4998.
104 Zhu Q W, Saeed M, Song R D, et al. Chinese Chemical Letters, 2020, 31(5), 1051.
105 Reuther J F, Goodrich A C, Escamilla P R, et al. Journal of the American Chemical Society, 2018, 140(10), 3768.
106 Hu J J, Chen Y H, Li Y Q, et al. Biomaterials, 2017, 112, 133.
107 Wu X L, He C L, Wu Y D, et al. Biomaterials, 2016, 75, 148.
108 Guo B L, Qu J, Zhao X, et al. Acta Biomaterialia, 2019, 84, 180.
109 Lei J F, Li X Y, Wang S, et al. ACS Applied Polymer Materials, 2019, 1(6), 1350.
110 Jiao T Y, Wu G C, Zhang Y, et al. Angewandte Chemie International Edition, 2020, 59(42), 18350.
111 Li Z Y, Zhou F, Li Z Y, et al. ACS Applied Materials & Interfaces, 2018, 10(30), 25194.
112 Jin R, Guo X L, Dong L L, et al. Colloids and Surfaces B: Biointerfaces, 2017, 158, 47.
113 Jiang X Y, Zeng F W, Yang X F, et al. Acta Biomaterialia, 2022, 141, 102.
114 Bédard M, Skirtach A G, Sukhorukov G B. Macromolecular Rapid Communications, 2007, 28(15), 1517.
115 Lin H, Xiao W, Qin S Y, et al. Polymer Chemistry, 2014, 5, 4437.
116 Yi Q Y, Sukhorukov G B. Soft Matter, 2014, 10(9), 1384.
117 Chen Q, Li X R, Xie Y, et al. International Journal of Biological Macromolecules, 2021, 187, 214.
118 Zhao W, Zhao Y M, Wang Q F, et al. Small, 2019, 15(45), 1903060.
119 Ko S, Yeon J P, Oh Y K. Cancer Research, 2019, 79(24), 6178.
120 Lee C, Lim K, Kim S S, et al. Colloids and Surfaces B: Biointerfaces, 2019, 176, 156.
121 Li Z Y, Zhu L S, Liu W Q, et al. Acta Biomaterialia, 2020, 107, 242.
122 Webb B A, Chimenti M, Jacobson M P, et al. Nature Reviews Cancer, 2011, 11(9), 671.
123 Liu J, Huang Y R, Kumar A, et al. Biotechnology Advances, 2014, 32(4), 693.
124 Zhang Y M, Liu Y H, Liu Y. Advanced Materials, 2020, 32(3), 1806158.
125 Chen J Y, Zhang Y D, Meng Z, et al. Chemical Science, 2020, 11, 6275.
126 Mia Y Q, Chen Y, Gu G D, et al. Carbohydrate Polymers, 2021, 273, 118623.
127 Cai X L, Luo Y N, Zhang W Y, et al. ACS Applied Materials & Interfaces, 2016, 8(24), 22442.
128 Luo F H, Fan Z X, Yin W, et al. Materials Science & Engineering C-Materials for Biological Applications, 2019, 105, 110107.
129 Ghadiali B G E, Stevens M M. Advanced Materials, 2008, 20(22), 4359.
130 Hu Q Y, Katti P S, Gu Z. Nanoscale, 2014, 6(21), 12273.
131 Mu J, Lin J, Huang P, et al. Chemical Society Reviews, 2018, 47(15), 5554.
132 Wang M Y, Gao B, Wang X Y, et al. Biomaterials Science, 2022, 10, 1883.
133 Cheng W R, Gu L Q, Ren W, et al. Materials Science & Engineering C-Materials for Biological Applications, 2014, 45, 600.
134 He H N, Sun L, Ye J X, et al. Journal of Controlled Release, 2016, 240, 67.
135 Ren Q, Liang Z G, Jiang X, et al. International Journal of Biological Macromolecules, 2019, 130, 845.
136 Ayaz P, Xu B J, Zhang X S, et al. Applied Surface Science, 2020, 527, 146806.
137 Zhang M, Zhang X Q, Cai S S, et al. Journal of Materials Chemistry B, 2020, 8(35), 7931.
138 Jabłońska-TrypuĆ A, Matejczyk M, Rosochacki S. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31(S1), 177.
139 MurpHy G, Nagase H. Molecular Aspects of Medicine, 2008, 29(5), 290.
140 Elegbede A I, Banerjee J, Hanson A J, et al. Journal of the American Chemical Society, 2008, 130(32), 10633.
141 Zhou J, Wang M Y, Ying H Y, et al. ACS Biomaterials Science & Engineering, 2018, 4(7), 2404.
142 Xu S M, Sang L, Zhang Y P, et al. Materials Science & Engineering C-Materials for Biological Applications, 2013, 33(2), 648.
143 Li Q M, Yang S N, Zhu L J, et al. Polymer Chemistry, 2015, 6, 2869.
144 Haddar H O, Zaghloul T I, Saeed H M. Biodegradation, 2009, 2, 687.
145 Li Q M, Zhu L J, Liu R G, et al. Journal of Materials Chemistry B, 2012, 22(37), 19964.
146 Sun Z, Yi Z, Zhang H Y, et al. Carbohydrate Polymers, 2017, 175, 159.
147 Yang K K, Yang Z Q, Yu G C, et al. Advanced Materials, 2021, 34(6), 2107434.
148 Christofi T, Baritaki S, Falzone L, et al. Cancers, 2019, 11(10), 1472.
149 Nurgali K, Jagoe R T, Abalo R. Frontiers in Pharmacology, 2018, 9, 245.
150 Zhou J, Rao L, Yu G C, et al. Chemical Society Reviews, 2021, 50(4), 2839.
151 Xu X Y, Zeng Z S, Chen J, et al. Chemical Engineering Journal, 2020, 390, 124628.
152 Zhang W X, Shi Y, Li H, et al. Carbohydrate Polymers, 2022, 288, 119418.
153 Wu T, Xie G X, Ni Y, et al. Journal of Proteome Research, 2014, 14(1), 447.
154 Nyenwe E A, Kitabchi A E. Metabolism-Clinical and Experimental, 2016, 65(4), 507.
155 Zhao L, Xiao C S, Wang L Y, et al. Chemical Communication, 2016, 52, 7633.
156 Zhou X, Wu H W, Long R M, et al. Journal of Nanobiotechnology, 2020, 18(1), 1.
157 Wen N, Lv S Y, Xu X B, et al. Materials Science & Engineering C-Materials for Biological Applications, 2019, 100, 94.
158 Li L, Jiang G H, Yu W J, et al. Materials Science & Engineering C-Materials for Biological Applications, 2017, 70, 278.
159 Andrew M, Jayaraman G. Carbohydrate Research, 2021, 505, 108326.
160 Lee J, Kim Y M, Kim J H, et al. Veterinary Immunology and Immunopathology, 2018, 200, 40.
161 Serrano-Aroca Á, Ferrandis-Montesinos M, Wang R B. ACS Applied Bio Materials, 2021, 4(8), 5897.
162 Gao X Y, Zhang S Y, Zhang W, et al. Central South Pharmacy, 2023, 21(7), 1852(in Chinese).
高星熠, 张诗悦, 张伟, 等. 中南药学, 2023, 21(7), 1852.
163 Zhao L. Alzheimers Dement, 2020, 16(3), 391.
164 Newman D J, Cragg G M. Journal of Natural Products, 2020, 83(3), 770.
165 Deng K W, Li Y L, Xiao M, et al. International Journal of Biological Macromolecules, 2020, 158, 562.
166 Buaron N, Mangraviti A, Volpin F, et al. Advanced Functional Materials, 2021, 31(44), 2100643.
[1] 张静, 高陈陈, 吴明明, 陈诚. 微/纳米级有机空心粒子构造及功能应用研究进展[J]. 材料导报, 2024, 38(21): 23040199-11.
[2] 鲍艳, 韩旆, 张文博, 刘锋, 高璐, 马建中. 螺吡喃类刺激响应变色聚合物的研究进展[J]. 材料导报, 2024, 38(17): 23060044-9.
[3] 唐昭敏, 赵健清, 周建仁, 唐婉兰, 魏佳元, 韩秉锟, 吕文轩. 交联诱导重组装多重刺激响应型聚合物胶束的制备及抗肿瘤应用[J]. 材料导报, 2024, 38(14): 23020219-6.
[4] 胡思, 李梦瑶, 徐飞红, 张敏, 吴琼, 张咚咚. 刺激响应型聚集在纳米粒子中的应用[J]. 材料导报, 2023, 37(S1): 23040323-8.
[5] 韩欣彤, 曹阳, 文峰, 高助威, 李成欣, 于晓龙. 氧化石墨烯与氮掺杂氧化石墨烯量子点负载去氧地胆草内酯抑制肿瘤细胞的研究[J]. 材料导报, 2023, 37(14): 22030289-7.
[6] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[7] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[8] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[9] 叶舒岳, 冯雅丽, 史海斌. 智能响应型小分子探针在肿瘤诊疗方面的研究进展[J]. 材料导报, 2022, 36(3): 21120202-15.
[10] 刘欢, 秦凌浩. 血小板囊泡作为药物递送载体的研究综述[J]. 材料导报, 2022, 36(19): 21010078-8.
[11] 义水灵, 熊向源. 转铁蛋白在纳米靶向药物递送体系的应用[J]. 材料导报, 2021, 35(z2): 501-507.
[12] 雷颖, 葛冲冲, 冯瑾, 尚娇娇. pH响应型三维纳米纤维的构建及其性能研究[J]. 材料导报, 2021, 35(z2): 508-512.
[13] 冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建. 4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用[J]. 材料导报, 2021, 35(5): 5147-5157.
[14] 张令坤, 孟俊行, 侯成义, 张青红, 李耀刚, 王宏志. 多刺激响应的MWCNTs-CS/AFP双层致动器:能量的转化与应用[J]. 材料导报, 2021, 35(20): 20155-20160.
[15] 周立生, 刘剑侠, 吴淑新, 陈国辉, 杨士山, 杨立波. 类玻璃高分子材料的研究进展[J]. 材料导报, 2020, 34(Z1): 585-591.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed