Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23060012-7    https://doi.org/10.11896/cldb.23060012
  金属与金属基复合材料 |
基于多物理场耦合的大气环境下碳钢点蚀演化及速率预测模型
姜绍飞1,*, 林金星1, 宋华霖1, 王威1, 陈敏文2
1 福州大学土木工程学院,福州 350108
2 海峡(福建)交通工程设计有限公司,福州 350001
Evolution and Rate Prediction Model of Pitting of Carbon Steel in Atmospheric Environment Based on Multiphysical Fields
JIANG Shaofei1,*, LIN Jinxing1, SONG Hualin1, WANG Wei1, CHEN Minwen2
1 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
2 Haixia (Fujian) Transportation Engineering Design Co., Ltd., Fuzhou 350001, China
下载:  全 文 ( PDF ) ( 12626KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为揭示大气环境下碳钢点蚀演化规律,基于电化学腐蚀机理,耦合三次电流分布、物质传递和变形几何多物理场建立碳钢点蚀演化的数值模型。基于此,分析pH值、NaCl浓度和相对湿度(Relative humidity,RH)对点蚀速率的影响并建立点蚀速率预测模型。研究表明:点蚀形态由初始圆锥形向半球形转变,最后发展成圆柱状;pH值处于6.0~7.0范围内,碳钢点蚀速率出现明显下降,最大降幅为23.96%;NaCl浓度在0.5%~1%(质量分数)时,增加NaCl浓度对点蚀速率提升明显,最大增幅为10%;碳钢点蚀速率在RH为72%~77%内存在极值;点蚀速率预测值与试验值误差在5%以内。以上表明本工作建立的数值模型和预测公式可用于碳钢点蚀演化和速率预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜绍飞
林金星
宋华霖
王威
陈敏文
关键词:  点蚀演化  COMSOL Multiphysics  大气环境  碳钢  腐蚀速率    
Abstract: To reveal the evolution law of the pitting of carbon steel in the atmospheric environment, a numerical model of pitting was established on the basis of the electrochemical corrosion mechanism. Meanwhile, it is also coupled with tertiary current distribution, material transfer and deformation geometry multiphysics fields. Based on the validated numerical model, an analysis was conducted by the effects of pH, NaCl concentration and relative humidity (RH) on the pitting rate. Furthermore, the prediction model of pitting rate was established. The results show that the pitting shape changes from conical to hemispherical and ultimately develops into a cylindrical shape. When the pH value is in the range of 6.0 to 7.0, the pitting rate remarkably decreases, with the maximum reduction being 23.96%. When the NaCl concentration falls within the range of 0.5% to 1% (mass fraction), an increase in NaCl concentration significantly impacts the pitting rate, with a maximum increment of 10%. When the RH ranges from 72% to 77%, the pitting rate of carbon steel exhibits an exceptionally high level. The error between the predicted pitting rate and the test is less than 5%. These indicate that the numerical model and prediction formula established in this work are applicable to predicting the pitting evolution process and pitting rate of carbon steel.
Key words:  pitting evolution    COMSOL Multiphysics    atmospheric environment    carbon steel    corrosion rate
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU513  
基金资助: 国家十三五重点专项课题(2020YFD1100403);中国地震局重点专项(2020EEEVL0402)
通讯作者:  *姜绍飞,通信作者,博士、福州大学二级教授、博士研究生导师、百千万人才工程国家级人选、国务院政府特殊津贴专家、福建省闽江学者特聘教授、福建省特支计划百千万工程领军人才,现任土木工程防震减灾信息化国家工程中心副主任和结构工程研究所所长。1997年东北大学博士毕业。目前主要从事结构健康监测与智能运维、传统风貌建筑保护与性能提升、城市更新(既有建筑改造与加固)、智能传感与AI信息技术方面的研究。主持国家基金5项、国家重点专项课题1项、国家重点专项专题4项以及其他国家省部级项目20余项。出版著作6部,发表学术论文200余篇,被SCI/EI收录140篇次。cejsf@fzu.edu.cn   
引用本文:    
姜绍飞, 林金星, 宋华霖, 王威, 陈敏文. 基于多物理场耦合的大气环境下碳钢点蚀演化及速率预测模型[J]. 材料导报, 2024, 38(19): 23060012-7.
JIANG Shaofei, LIN Jinxing, SONG Hualin, WANG Wei, CHEN Minwen. Evolution and Rate Prediction Model of Pitting of Carbon Steel in Atmospheric Environment Based on Multiphysical Fields. Materials Reports, 2024, 38(19): 23060012-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060012  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23060012
1 Zhang X Q, Teng Y X, Guo J. Materials Reports, 2023, 37(8), 101(in Chinese).
张喜庆, 滕莹雪, 郭菁. 材料导报, 2023, 37(8), 101.
2 Paik J K, Thayamballi A K, Park Y I, et al. Corrosion Science, 2004, 46(2), 471.
3 Velázquez J C, Caleyo F, Valor A, et al. Corrosion, 2009, 65(5), 332.
4 Jiang S F, Zhang Z H, Song H L, et al. Journal of Harbin Institute of Technology, 2024, 56(10), 14(in Chinese).
姜绍飞, 郑臻弘, 宋华霖, 等. 哈尔滨工业大学学报, 2024, 56(10), 14.
5 Valor A, Caleyo F, Alfonso L, et al. Corrosion Science, 2007, 49(2), 559.
6 Cavanaugh M K, Buchheit R G, Birbilis. Corrosion Science, 2010, 52(9), 3070.
7 Jiménez-Come M J, Martín M L, Matres V, et al. Corrosion Reviews, 2020, 38(4), 339.
8 Akhlaghi B, Mesghali H, Ehteshami M, et al. Process Safety and Environmental Protection, 2023, 174, 320.
9 Xia M, Wang Y, Xu S. Construction and Building Materials, 2021, 272, 121915.
10 Guo Q, Zhao Y, Xing Y, et al. Elsevier, 2022, 39, 115.
11 Mollapour Y, Poursaeidi E. Engineering Failure Analysis, 2021, 128, 105589.
12 Prajapati V, Kumar Y, Gupta D, et al. Journal of Bio-and Tribo-Corrosion, 2022, 8, 1.
13 Ding J, Wang H, Han E H. Journal of Materials Science & Technology, 2021, 60, 186.
14 Wang H, Xu S H, Su L. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(1), 23(in Chinese).
王皓, 徐善华, 苏磊. 土木建筑与环境工程, 2016, 38(1), 23.
15 Codaro E N, Nakazato R Z, Horovistiz A L, et al. Materials Science and Engineering: A, 2002, 334(1-2), 298.
16 Pidaparti R M, Patel R K. Corrosion Science, 2010, 52(9), 3150.
17 Sim S, Cole I S, Choi Y S, et al. International Journal of Greenhouse Gas Control, 2014, 29, 185.
18 Liu X, Pei F, Zhu Y C, et al. Corrosion & Protection, 2020, 41(3), 22 (in Chinese).
刘欣, 裴锋, 朱亦晨, 等. 腐蚀与防护, 2020, 41(3), 22.
19 Lazorenko G, Kasprzhitskii A, Nazdracheva T. Construction and Building Materials, 2021, 288, 123115.
20 Song Q, Wang X, Pan B, et al. Anti-Corrosion Methods and Materials, 2020, 67(2), 187.
21 Shu G P, Chen Y, Lu R H, et al. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2022, 54(4), 475(in Chinese).
舒赣平, 陈尧, 卢瑞华, 等. 西安建筑科技大学学报(自然科学版), 2022, 54(4), 475.
22 Ren S B. Study on the evolution process of pitting and its influence on the fatigue properties of corroded steel. Ph.D. Thesis, Xi'an University of Architecture and Technology, China, 2016 (in Chinese).
任松波. 点蚀坑演化过程及其对锈蚀钢材疲劳性能影响研究. 博士学位论文, 西安建筑科技大学, 2016.
23 Han J, Carey J W, Zhang J. Journal of Applied Electrochemistry, 2011, 41, 741.
24 Li P, Du M. Corrosion Communications, 2022, 7, 23.
[1] 陈宗平, 李健成, 周济. 内置碳钢不锈钢管海洋混凝土柱轴压试验及承载力计算[J]. 材料导报, 2024, 38(12): 22100018-9.
[2] 毕江元, 宋述鹏, 丁兴, 柯德庆, 周和荣. 酒石酸钾钠和EDTA对青铜表面锈蚀的清洗效果对比研究[J]. 材料导报, 2023, 37(19): 22030208-6.
[3] 胥聪敏, 高豪然, 朱文胜, 杨兴, 陈月清, 王文渊. D-氨基酸驱散生物膜的行为与作用机理研究[J]. 材料导报, 2023, 37(1): 21050076-7.
[4] 张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
[5] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[6] 孙有美, 赵全成, 李茜, 王玲, 佘祖新, 王长朋. FN04Mo在七种典型大气环境下的力学性能变化规律及腐蚀机理[J]. 材料导报, 2021, 35(18): 18182-18189.
[7] 李炎铮, 云晓雪, 赖承班, 何昌林, 闵永安. 添加1%Mo提高针阀体用钢18Cr2Ni2的强韧性[J]. 材料导报, 2021, 35(12): 12130-12135.
[8] 韦文厂, 刘峥, 魏润芝, 吕奕菊, 韩佳星, 张淑芬. 2-氨基芴双希夫碱在模拟循环冷却水中对低碳钢的缓蚀性能[J]. 材料导报, 2021, 35(12): 12196-12201.
[9] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[10] 温俊霞, 曹睿, 李骏鹏, 曾茂燕, 陈璟. 球墨铸铁表面CMT堆焊H08Mn2Si焊丝的研究[J]. 材料导报, 2019, 33(Z2): 447-451.
[11] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[12] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[13] 陈钢, 雷玉成, 鞠娜, 朱强, 王丹, 李天庆. 铅铋共晶合金的流动速度对CLAM钢腐蚀行为的影响[J]. 材料导报, 2019, 33(22): 3772-3776.
[14] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[15] 许萍, 任恒阳, 魏智刚, 汪长征. 碳钢表面混合与单种细菌腐蚀作用对比研究[J]. 材料导报, 2019, 33(12): 2055-2061.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed