Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20080184-6    https://doi.org/10.11896/cldb.20080184
  无机非金属及其复合材料 |
超临界抗溶剂法制备金属氧化物纳米颗粒的研究进展
李泽朕1,2, 刘昊1,2, 徐沛瑶1,2, 陈洲江1,2, 王士斌1,2, 陈爱政1,2
1 华侨大学生物材料与组织工程研究所,福建 厦门 361021
2 华侨大学化工学院,福建省生物化工技术重点实验室,福建 厦门 361021
Progress in Development of Metal Oxide Nanoparticles by Supercritical Anti-solvent Method
LI Zezhen1,2, LIU Hao1,2, XU Peiyao1,2, CHEN Zhoujiang1,2, WANG Shibin1,2, CHEN Aizheng1,2
1 Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, Fujian, China
2 Fujian Key Laboratory of Biochemical Technology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
下载:  全 文 ( PDF ) ( 2719KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有纳米尺寸的金属氧化物因其优异的催化性能而在电化学、生物医学和其他科学领域备受瞩目。目前,制备金属氧化物纳米颗粒的传统方法主要有水热法、溶剂热法、沉淀法、微乳液法、溶胶凝胶法和模板法等。然而,这些方法往往因成本偏高、存在有机溶剂残留等问题而限制了其进一步发展。为此,迫切需要开发一种制备金属氧化物纳米颗粒的新型技术来弥补传统方法的不足,促进金属氧化物纳米颗粒制备技术的发展。超临界流体是温度和压力处在物质的临界温度和临界压力之上的一种处于特殊状态的流体,其兼具气体和液体的某些性质,具有独特的溶剂化特征、近乎于零的表面张力、低粘度、易调变,具有接近液体的密度与溶解度和类似气体的扩散性质。近年来,超临界流体技术由于其温和的操作条件和独特的性质而广泛应用于化工、环境、制药等领域。其中,超临界抗溶剂法造粒因具有操作条件温和、制备颗粒大小可控、颗粒无有机溶剂残留等优点而备受瞩目。金属氧化物纳米颗粒因其本身的尺寸效应,在催化、传感、生物医学等领域具有较为良好的应用前景。本文介绍了超临界抗溶剂法制备金属氧化物纳米颗粒的基本原理、制备流程及应用,并着重探讨了不同温度、压力和溶液浓度对超临界抗溶剂法制备金属纳米颗粒粒径大小以及形貌的影响,最后对该方法面临的问题和挑战以及发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李泽朕
刘昊
徐沛瑶
陈洲江
王士斌
陈爱政
关键词:  超临界抗溶剂法  金属氧化物  纳米颗粒  粒径    
Abstract: Metal oxides with nanometer size have attracted much attention in the fields of electrochemistry, biomedicine and other sciences due to their excellent catalytic properties. At present, the traditional methods of preparing metal oxide nanoparticles include the hydrothermal method, solthermal method, precipitation method, microemulsion method, sol-gel method and template method. However, the development of these methods is limited due to the high cost and the existence of residual organic solvents. Therefore, it is urgent to develop a new preparation techno-logy of metal oxide nanoparticles to make up for the shortcomings of traditional methods and promote the development of preparation technology of metal oxide nanoparticles. Supercritical fluid is a kind of fluid in a special state whose temperature and pressure are above the critical temperature and pressure of material. It has some properties of gas and liquid. It has unique solvation characteristics, near zero surface tension, low viscosity, easy to adjust, close to the density and solubility of liquid and similar gas diffusion properties. In recent years, the supercritical fluid technology has garnered enormous interest in chemical, environmental, pharmaceutical and other fields due to the mild operation conditions and unique properties of supercritical fluids (SCFs). Amongst different variants of SCF processes, the supercritical anti-solvent (SAS) method is widely used in the fabrication of nanoparticulate forms of various substrates as its moderate operating condition, results in no residual organic solvents in the particles, and controllable particle size among others. Various metal oxide nanoparticles can be synthesized using this SAS process, which showed excellent applications in various fields, such as catalysis, sensing, and biomedicine. In this article, the basic principle, preparation process and application of diverse metal oxide nanoparticles by the SAS method are reviewed. In addition, the effects of temperature, pressure and solution concentration in SAS process on the size and morphology of metal nanoparticles were also discussed. And we also emphasized the challenge that may affect the application and future development.
Key words:  supercritical anti-solvent method    metal oxide    nanoparticles    particle size
发布日期:  2022-02-10
ZTFLH:  TQ139.2  
基金资助: 国家自然科学基金资助项目(32071323;81971734;31800794);福建省高校科技创新团队计划项目;华侨大学研究生科研创新能力培养资助项目
通讯作者:  azchen@hqu.edu.cn   
作者简介:  李泽朕,2019年6月毕业于烟台大学,获得工学学士学位。现为华侨大学化工学院硕士研究生,在陈爱政教授指导下进行研究。目前主要研究领域为超临界流体技术制备金属氧化物及其生物医学应用。
陈爱政,华侨大学化工学院教授、博士研究生导师。福建省优秀教师,入选国家百千万人才工程、被授予“有突出贡献中青年专家”荣誉称号。目前担任中国生物材料学会理事、中国生物材料学会复合材料分会秘书长、华侨大学生物材料与组织工程研究所所长、福建省生物材料科技创新团队带头人、福建省生物材料化工博士生导师团队带头人。主要从事超临界流体技术及生物材料与组织工程领域的研究,主持国家自然科学基金海峡联合重点项目、面上项目、国家重点研发计划政府间国际科技创新合作重点专项等国家级课题8项,已在AM、AFM、Adv Sci、Small、JCR、CEJ、AHM等期刊发表SCI收录论文100余篇。
引用本文:    
李泽朕, 刘昊, 徐沛瑶, 陈洲江, 王士斌, 陈爱政. 超临界抗溶剂法制备金属氧化物纳米颗粒的研究进展[J]. 材料导报, 2022, 36(3): 20080184-6.
LI Zezhen, LIU Hao, XU Peiyao, CHEN Zhoujiang, WANG Shibin, CHEN Aizheng. Progress in Development of Metal Oxide Nanoparticles by Supercritical Anti-solvent Method. Materials Reports, 2022, 36(3): 20080184-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080184  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20080184
1 Manjakkal L, Szwagierczak D, Dahiya R. Progress in Materials Science, 2020, 109,100635.
2 Zheng Z L, He X W, Zhao J W, et al.Journal of Functional Materials, 2016, 47(6),6043 (in Chinese).
郑志林, 何小伟, 赵佳伟, 等.功能材料, 2016, 47(6), 6043.
3 Xu Z Y, Zhao W B, Chai M Y, et al. New Chemical Materials, 2019, 47(4), 38(in Chinese).
徐志勇, 赵文波, 柴牧原, 等. 化工新型材料, 2019, 47(4),38.
4 Xu Y H. Research on the preparation of nano-structured metal complex oxides and their application in electrochemical sensors. Ph. D. Thesis, Shanghai University,China, 2011 (in Chinese).
徐彦红. 金属复合氧化物纳米材料的制备及其在电化学传感器中的应用研究. 博士学位论文, 上海大学, 2011.
5 Lu H J, Wang J K, Stoller M, et al. Advances in Materials Science & Engineering, 2016, 2016,1.
6 Greta R P, Zhou Y, Roman K, et al. Angewandte Chemie International Edition, 2011, 50(4), 856.
7 Chen Z X, Zheng B Y, Li X X, et al. Chemical Industry and Engineering Progress, 2010, 29(1),94 (in Chinese).
陈彰旭, 郑炳云, 李先学, 等. 化工进展, 2010, 29(1), 94.
8 Zhang Y M, Jiang H X. Chemical Industry and Engineering Progress, 2013, 32(8),1825 (in Chinese).
张以敏, 姜浩锡. 化工进展, 2013, 32(8),1825.
9 Knez Z, Markocic E, Leitgeb M, et al. Energy, 2014, 77,235.
10 Fang C H, Chen P H, Chen Y P, et al. Chemical Engineering & Techonlogy, 2020, 43(6), 1186.
11 Wang Y L, Dave R N, Pfeffer R. Journal of Supercritical Fluid, 2004, 28(1),85.
12 Yeo S D, Kiran E. Journal of Supercritical Fluid, 2005, 34(3), 287.
13 Haq M, Chun B S. LWT-Food Science and Technology, 2018, 92,523.
14 Yeo S D, Lim G B, Debendetti P G, et al. Biotechnology and Bioengineering, 1993, 41(3),341.
15 Hakuta Y, Hayashi H, Arai K. Current Opinion in Solid State & Materials Science, 2003, 7(4/5),341
16 Falk R, Randolph T W, Meyer J D, et al. Journal of Controlled Release, 1997, 44(1), 77.
17 Chattopadhyay P, Gupta R B. Industrial & Engineering Chemistry Research, 2002, 41(24), 6049.
18 Margulis K, Neofytou E A, Beygui R E, et al. ACS Nano, 2015, 9(9), 9416.
19 Chen A Z, Wang G Y, Wang S B, et al. International Journal of Nano-Medicine, 2012, 7,3013.
20 Meziani M J, Sun Y P. Journal of the American Chemical Society, 2003, 125(26), 8015.
21 Shen Y B, Du Z, Wang Q, et al. Powder Technology, 2014, 254, 416.
22 Pu X M, Kang Y Q, Chen A Z, et al.Journal of Functional Materials, 2007(4),549 (in Chinese).
蒲曦鸣, 康云清, 陈爱政, 等. 功能材料, 2007(4),549.
23 Chen B Q, Kankala R K, Wang S B, et al. Journal of Supercritical Fluids, 2018, 133,486.
24 Kankala R K, Liu C G, Chen A Z, et al. ACS Biomaterials Science & Engineering, 2017, 3(10),2431.
25 Jiang H X, He C H, Sun H H, et al. Journal of Inorganic Matericals, 2010, 25(10),1065 (in Chinese).
姜浩锡, 何春花, 孙焕花, 等. 无机材料学报, 2010, 25(10),1065.
26 Kang Y Q, Chen A Z, Wang S B, et al. Chemical Industry and Enginee-ring Progress, 2013, 32(8),1734 (in Chinese).
康永强, 陈爱政, 王士斌, 等. 化工进展, 2013, 32(8),1734.
27 Kang Z W, Kankala R K, Chen B Q, et al. Applied Materials & Interfaces, 2019, 11,28781.
28 Jiang H X, Zhou J L, Sun H H, et al. Journal of Rare Earths, 2016, 34(11),1126.
29 Jiang D Y, Zhang M H, Li G M, et al. Catalysis Communications, 2011, 17, 59.
30 Jiang H X, Wu X H, Wang C X, et al. Catalysis Surveys from Asis, 2017, 21(1),37.
31 Jiang N N, Wang Y W, Li D Y, et al. Partical & Partical Systems Cha-racterization, 2019, 36(9),1900016.
32 Lu T J, Blackburn S, Dickinson C, et al. Powder Technology, 2008, 188(3),264.
33 Jiang H X, Huang P, Liu L, et al. Materials Characterization, 2011, 63,98.
34 Tang Z R, Edwards J K, Bartley J K, et al. Journal of Catalysis, 2007, 249(2),208.
35 He C Y, Jiang H X, Zhang M H. Chinese Journal of Catalysis, 2007, 10(28),890(in Chinese).
何春燕, 姜浩锡, 张敏华. 催化学报, 2007, 10(28),890.
36 Reverchon E, Marco I D, Torino E. Journal of Supercritical Fluid, 2007, 43,126.
37 An K, Hyeon T. Nano Today, 2009, 4(4),359.
[1] 陈如冰, 胡永琴, 陈美珠, 安佳, 吕颖, 刘玉菲, 李东玲. 基于过氧化氢酶介导金纳米颗粒交联聚集的乙肝表面抗原可视化检测[J]. 材料导报, 2022, 36(5): 21020098-4.
[2] 李太广, 黄大兴, 商红静, 谢波玮, 邹琪, 古宏伟, 丁发柱. 金属有机沉积法制备YBCO薄膜的研究进展[J]. 材料导报, 2022, 36(2): 20090054-11.
[3] 孙毅, 李梦晗, 王超, 韩毅, 李国栋. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(z2): 101-106.
[4] 邬欣, 曾利胜, 王剑龙, 李建. 无机纳米颗粒在癌症治疗中的研究进展[J]. 材料导报, 2021, 35(Z1): 87-93.
[5] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[6] 赵晨, 毕常芬, 郑宝鑫, 侯文彬, 李祎亮. 金纳米颗粒应用于肿瘤显像和治疗的研究进展[J]. 材料导报, 2021, 35(Z1): 322-327.
[7] 李聪, 李志远, 陶术鹤. 多线切割工艺对单晶锗损伤层及几何参数的影响[J]. 材料导报, 2021, 35(Z1): 386-388.
[8] 吴国玉, 郑晔, 王明涌, 邢志军. 化学还原法制备高分散纳米铂粒子[J]. 材料导报, 2021, 35(Z1): 406-410.
[9] 姚子成, 肖方锟, 刘兆峰, 张大鹏, 朱桂茹. 石墨炭纳米颗粒改性聚砜支撑层制备正渗透复合膜[J]. 材料导报, 2021, 35(8): 8196-8200.
[10] 谭聪, 刘洋, 何莹, 李洋, 李博文, 仇浩. 不同粒径金属基纳米颗粒的性质与其环境行为和生物效应的关系[J]. 材料导报, 2021, 35(7): 7121-7126.
[11] 朱菲, 吴祖洁, 程明辉, 管金华, 邹龙. 金属纳米颗粒的生物合成研究进展[J]. 材料导报, 2021, 35(7): 7127-7138.
[12] 李木兰, 张亮, 姜楠, 孙磊, 熊明月. 纳米颗粒对无铅钎料改性的研究进展[J]. 材料导报, 2021, 35(5): 5130-5139.
[13] 吴黎明, 徐进霞, 范志成, 梅菲, 周远明, 刘凌云. Pt对In2O3纳米线场效应晶体管电学性能的影响[J]. 材料导报, 2021, 35(4): 4028-4033.
[14] 冯江波, 王景平, 苑慧莹, 任秦博, 曹金安, 王学川. 不同粒径PANI/SiO2对环氧涂层防腐性能的影响[J]. 材料导报, 2021, 35(24): 24182-24188.
[15] 林发明, 侯启龙, 王杰, 李翔龙. 超声辅助电火花放电制备微纳米镍颗粒中超声功率对颗粒粒径的影响[J]. 材料导报, 2021, 35(2): 2115-2119.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed