Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22090297-8    https://doi.org/10.11896/cldb.22090297
  无机非金属及其复合材料 |
加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响
梁咏宁1,2,*, 刘务东1, 赵凯2, 季韬2
1 福州大学先进制造学院,福建 泉州 362251
2 福州大学土木工程学院,福州 350108
Effect of Different Curing Regimes on the Corrosion of Alkali-Activated Slag Concrete Reinforcement Under Carbonation Environment
LIANG Yongning1,2,*, LIU Wudong1, ZHAO Kai2, JI Tao2
1 School of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, Fujian, China
2 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 24172KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了加速碳化环境(CO2浓度为20%)下,标准养护、饱和Ca(OH)2溶液养护和蒸压养护对CaO+Na2CO3为激发剂的碱矿渣混凝土(CNC)中钢筋锈蚀的影响。结果表明,与标准养护相比,饱和Ca(OH)2溶液养护不改变CNC的水化产物,但使其早期水化更加充分,因此平均孔径减小;蒸压养护使CNC水化产物由C-S-H凝胶转化为水榴石与11-Å型的托勃莫来石,平均孔径和总孔隙率显著减小。在相同的加速碳化龄期下,与标准养护相比,饱和Ca(OH)2溶液养护和蒸压养护的CNC碳化深度降低、CNC中钢筋发生高概率锈蚀时间延缓、钢筋失重率下降。与相同养护条件下的普通硅酸盐混凝土相比,标准养护和饱和Ca(OH)2溶液养护的CNC中钢筋抗锈蚀能力远小于普通硅酸盐混凝土,而蒸压养护的CNC中钢筋抗锈蚀能力大于普通硅酸盐混凝土。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁咏宁
刘务东
赵凯
季韬
关键词:  碳化  养护制度  碱矿渣混凝土  孔结构  电化学测试  失重率  钢筋锈蚀    
Abstract: In this work, the effects of standard curing, saturated Ca(OH)2 solution curing and autoclave curing on the corrosion of reinforcement in alkali-activated slag concrete with CaO+Na2CO3 as the exciter (CNC) were investigated under accelerated carbonation environment (CO2 concentration of 20%). The results show that compared with standard curing, saturated Ca(OH)2 solution curing does not change the hydration products of CNC but can make the early hydration of CNC more sufficient. Therefore, the average pore size decreases. Autoclaving curing converts the hydration products of CNC from C-S-H gel into hydrogarnet and 11-Å type tobermorite. Therefore, the average pore size and total poro-sity decrease significantly. Under the same accelerated carbonization conditions, compared with standard curing, the carbonization depth of CNC decreased, the high probability corrosion time of reinforcement in CNC delayed, and the weight loss rate of reinforcement in CNC decreased both in saturated Ca(OH)2 solution curing and in autoclaving curing. Under the same curing conditions, the corrosion resistance of steel bars in CNC cured by standard curing and saturated Ca(OH)2 solution is much less than that in ordinary Portland cement concrete. The corrosion resistance of steel bars in CNC cured by autoclaving was better than that in ordinary Portland cement concrete.
Key words:  carbonization    curing regimes    alkali-activated slag concrete    pore structure    electrochemical test    weight loss rate    steel corrosion
发布日期:  2024-06-25
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51708120;51878179);福建省自然科学基金(2021J02021)
通讯作者:  *梁咏宁,福州大学副教授、硕士研究生导师。2005年获得中国矿业大学工学博士学位,目前主要从事混凝土结构耐久性、环保水泥基材料制备及耐久性的研究工作,发表论文30余篇。yongningliang@163.com   
引用本文:    
梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
LIANG Yongning, LIU Wudong, ZHAO Kai, JI Tao. Effect of Different Curing Regimes on the Corrosion of Alkali-Activated Slag Concrete Reinforcement Under Carbonation Environment. Materials Reports, 2024, 38(11): 22090297-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090297  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22090297
1 Ding Y, Dai J G, Shi C J. Construction & Building Materials, 2016, 127(30), 68.
2 Bernal S A, Provis J L. Journal of the American Ceramic Society, 2014, 97(4), 997.
3 Li N, Farzadnia N, Shi C. Cement & Concrete Research, 2017, 100, 214.
4 Puertas F, Palacios M, Vázquez T. Journal of Materials Science, 2006, 41(10), 3071.
5 Bakharev T, Sanjayan J G, Cheng Y B. Cement & Concrete Research, 2001, 31(9), 1277.
6 Song H W, Kwon S J. Cement and Concrete Research, 2007, 37(6), 909.
7 Zhao K, Liang Y, Ji T, et al. Construction and Building Materials, 2022, 262, 120044.
8 Aperador W, Gutierrez R M D, Bastidas D M. Corrosion Science, 2009, 51(9), 2027.
9 Cai C G. Journal of Municipal Technology, 2008, 26(2), 149 (in Chinese).
蔡传国. 市政技术, 2008, 26(2), 149.
10 Collins F, Sanjayan J G. Cement and Concrete Composites, 2001, 23(4-5), 345.
11 Zhang G Z, Ge J C, Zhang C X, et, al. Materials Reports, 2021, 35(15), 15125 (in Chinese).
张高展, 葛竞成, 张春晓, 等. 材料导报, 2021, 35(15), 15125.
12 Rashad A M, Zeedan S R, Hassan H A. Construction and Building Materials, 2012, 33, 70.
13 Jiang Z P, Ming W. Journal of Building Materials, 2018, 21(2), 49 (in Chinese).
姜正平, 明维. 建筑材料学报, 2018, 21(2), 49.
14 Aldea C M, Young F, Wang K, et al. Cement & Concrete Research, 2000, 30(3), 465.
15 Yazici H, Yardimci M Y, Aydin S, et al. Construction & Building Materials, 2009, 23(3), 1223.
16 Alhozaimy A, Jaafar M S, Al-Negheimish A, et al. Construction & Buil-ding Materials, 2012, 27(1), 218.
17 Jupe A C, Wilkinson A P, Luke K, et al. Cement & Concrete Research, 2008, 38(5), 660.
18 Mitsuda T, Taylor H F W. Cement and Concrete Research, 1975, 5(3), 203.
19 Carlos A R, Craig D W, Michael A F. Material Science and Engineering International Journal, 2017, 4, 116.
20 Deng X, Fang Z, Zeng H Y, et al. Chemical Reaction Engineering and Technology, 2010(4), 309 (in Chinese).
邓欣, 方真, 曾虹燕, 等. 化学反应工程与工艺, 2010(4), 309.
21 Li G, Zhou J, Yue J, et al. Construction and Building Materials, 2020, 235, 117465.
22 Ilic B, Radonjanin V, Malegev M, et al. Construction and Building Materials, 2017, 133, 243.
23 Law D W, Adam A A, Thomas K. Materials and Structures, 2012, 45(9), 1425.
24 Broomfield J P. Corrosion of Steel in Concrete: Understanding, Investigation and Repair, CRC Press, USA, 2003, pp. 63.
25 Mundra S, Criado M, Bernal S A, et al. Cement & Concrete Research, 2017, 100, 385.
26 Mangat P S, Ojedokun O O, Lambert P. Cement and Concrete Compo-sites, 2020, 115.
27 Bouteiller V, Cremona C, Baroghel-Bouny V, et al. Cement and Concrete Research, 2012, 42(11), 1456.
28 Angus M J, Glasser F P. MRS Proceedings, 1985, 50, 547.
29 Scott A, Alexander M G. Cement & Concrete Research, 2016, 89, 45.
30 Dong B Q, Qiu Q W, Xiang J Q, et al. Construction and Building Materials, 2014, 54, 558.
31 Snyder K A, Feng X, Keen B D, et al. Cement and Concrete Research, 2003, 33(6), 793.
32 Millard S G, Law D, Bungey J H, et al. NDT and E International, 2001, 34(6), 409.
33 Yu X, Yu X, Jiang X, et al. Concrete, 2015(11), 110 (in Chinese).
喻骁, 于旭, 姜旭, 等. 混凝土, 2015(11), 110.
[1] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[2] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[3] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[4] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[5] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[6] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[7] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[8] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[9] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[10] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[11] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[12] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[13] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[14] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[15] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed