Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22100095-8    https://doi.org/10.11896/cldb.22100095
  高分子与聚合物基复合材料 |
氨纶防黄剂粉尘的着火特性分析
罗振敏1,2,*, 张春艳1, 杨勇1
1 西安科技大学安全科学与工程学院,西安 710054
2 陕西省工业过程安全与应急救援工程技术研究中心,西安 710054
Analysis on Ignition Characteristics of Spandex Anti-yellowing Agent Dust
LUO Zhenmin1,2,*, ZHANG Chunyan1, YANG Yong1
1 College of Safety Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
2 Shaanxi Key Laboratory of Prevention and Control of Coal Fire, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 6200KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究氨纶防黄剂粉尘的燃烧特性,采用粉尘云最低着火温度标准实验装置和同步热分析技术,分别研究了典型防黄剂HN-150粉尘云最低着火温度(MITC)的分布特性和粉尘热解过程,根据实验结果进行燃烧特性和动力学分析。研究结果表明:粉尘粒径越小,MITC越低;喷尘压力增大,MITC升高;粉尘云质量浓度增大,MITC先降低后稳定,且当粉尘云质量浓度大于2 096 g/m3时,MITC稳定在270 ℃,小于150 g/m3时,不会发生着火;粉尘云质量浓度对MITC的影响最大。随着粒径的增大,粉尘的着火温度、峰值温度、燃尽温度呈上升趋势,最大燃烧速率、平均燃烧速率、可燃性指数和综合燃烧特性指数呈下降趋势;随着升温速率的增大,粉尘的燃烧特性参数均呈上升趋势。随着粒径的减小,粉尘的平均活化能减小,越容易发生燃烧。MITC和热解过程中的着火温度相对应,这与燃烧特性和热分析动力学结果一致。因此该基础研究可为防黄剂的安全生产提供参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗振敏
张春艳
杨勇
关键词:  最低着火温度  粒径  热解  燃烧特性  动力学分析    
Abstract: In order to study the combustion characteristics of spandex anti-yellowing agent dust, a standard experimental device for the minimum ignition temperature of dust cloud and a simultaneous thermal analysis technique were used to study the distribution characteristics of the minimum ignition temperature of dust cloud (MITC) and pyrolysis characteristics of anti-yellowing agent HN-150. The results show that: the smaller the dust particle size, the lower the MITC; the dust spray pressure increases, the MITC rises; the dust cloud concentration increases, the MITC first decreases and then stabilizes, and when the dust mass concentration is greater than 2 096 g/m3, the MITC are stable at 270 ℃, and when it is less than 150 g/m3, no fire occurs. With the increase of particle size, the ignition temperature, peak temperature and combustion temperature of dust show an increasing trend, and the maximum burning rate, average burning rate, flammability index and comprehensive combustion characteristics index show a decreasing trend; with the increase of heating rate, the combustion characteristics parameters of dust all show an increasing trend. As the particle size decreases, the average activation energy of the dust decreases, and the more prone to combustion. MITC and the ignition temperature in the pyrolysis process have a corresponding relationship, which is consistent with the results of combustion characteristics and thermal analysis kinetics. The ignition temperature of MITC and pyrolysis process is consistent with the results of combustion characteristics and thermal kinetics analysis. Therefore, this basic study can provide a reference basis for the safe production of anti-yellowing agent.
Key words:  minimum ignition temperature    particle size    pyrolysis    combustion characteristics    kinetic analysis
发布日期:  2024-06-25
ZTFLH:  X937  
  TQ340.4  
基金资助: 陕西省教育厅青年创新团队科研计划项目(22JP049)
通讯作者:  *罗振敏,西安科技大学安全科学与工程学院教授、博士研究生导师。1998年西安矿业学院新材料工程系化工工艺专业本科毕业,2001年西安科技学院矿物加工工程专业硕士毕业后到西安科技大学工作至今,2009年西安科技大学矿业工程专业博士毕业。主要从事气体燃爆防控理论与技术的研究与应用。现任西安科技大学安全科学与工程学院执行院长,主持国家自然科学基金、国家重点研发计划子课题等纵向科研项目10余项,获国家教学成果二等奖 1 项,国家专利和软件著作权30余项,出版著作3部,发表学术论文 100余篇,其中SCI、EI 等收录 40 余篇。zmluo@xust.edu.cn   
引用本文:    
罗振敏, 张春艳, 杨勇. 氨纶防黄剂粉尘的着火特性分析[J]. 材料导报, 2024, 38(11): 22100095-8.
LUO Zhenmin, ZHANG Chunyan, YANG Yong. Analysis on Ignition Characteristics of Spandex Anti-yellowing Agent Dust. Materials Reports, 2024, 38(11): 22100095-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100095  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22100095
1 Wang Q H, Fang X, Li Z H. Journal of Safety Science and Technology, 2020, 16(9), 89 (in Chinese).
王秋红, 方向, 李州昊. 中国安全生产科学技术, 2020, 16(9), 89.
2 Wang Q H, Yuan S, Wei Y M, et al. Explosion and Shock Waves, 2019, 39(5), 146 (in Chinese).
王庆慧, 袁帅, 卫园梦, 等. 爆炸与冲击, 2019, 39(5), 146.
3 Eckhoff R K. Journal of Loss Prevention in the Process Industries, 2019, 59, 63.
4 Sun H, Wang Z Q, Zhang Q. Journal of Loss Prevention in the Process Industries, 2020, 68, 104305.
5 Li C, Yuan C M, Li G. Industrial Safety and Environmental Protection, 2013, 39(3), 19 (in Chinese).
李畅, 苑春苗, 李刚. 工业安全与环保, 2013, 39(3), 19.
6 Eckhoff R K. Process Safety and Environmental Protection, 2019, 129, 17.
7 Luo Z M, Zhang M, Hao Q Q, et al. Journal of Safety Science and Technology, 2020, 16(3), 55 (in Chinese).
罗振敏, 张蔓, 郝强强, 等. 中国安全生产科学技术, 2020, 16(3), 55.
8 Wu D J, Norman F, Verplaetsen F, et al. Journal of Hazardous Materials, 2016, 307, 274.
9 Liu T Q. Journal of Safety and Environment, 2020, 20(4), 1334 (in Chinese).
刘天奇. 安全与环境学报, 2020, 20(4), 1334.
10 Wang Q H, Fang X, Shu C M, et al. Journal of Loss Prevention in the Process Industries, 2020, 64, 104076.
11 Deng J, Qu J, Wang Q H, et al. Process Safety and Environmental Protection, 2019, 129, 176.
12 Mishra D P, Azam S. Fuel, 2018, 227(11), 424.
13 Pang L, Ma R, Gao J C, et al. Journal of Safety Science and Technology, 2017, 13(5), 5 (in Chinese).
庞磊, 马冉, 高建村, 等. 中国安全生产科学技术, 2017, 13(5), 5.
14 Zheng Q Y, Liu L, Liu T Q, et al. China Plastics Industry, 2021, 49(4), 97 (in Chinese).
郑秋雨, 刘琳, 刘天奇, 等. 塑料工业, 2021, 49(4), 97.
15 Cui Z W, Zhou X H, Zhou H D, et al. China Wood Industry, 2019, 33(2), 11 (in Chinese).
崔忠文, 周曦禾, 周捍东, 等. 木材工业, 2019, 33(2), 11.
16 Zhao J P, Wang H W. China Safety Science Journal, 2017, 27(12), 26 (in Chinese).
赵江平, 万杭炜. 中国安全科学学报, 2017, 27(12), 26.
17 Cao W G, Zheng J J, Peng Y H, et al. Explosive Materials, 2016, 45(1), 1 (in Chinese).
曹卫国, 郑俊杰, 彭于怀, 等. 爆破器材, 2016, 45(1), 1.
18 Zhang J F, Liu X, Wang Y W, et al. Procedia Engineering, 2014, 84, 467.
19 Singh R K, Pandey D, Patil T, et al. Bioresource Technology, 2020, 310, 123464.
20 Wang Q H, Ma C, Liu Z, et al. Journal of Xi'an University of Science and Technology, 2022, 42(1), 22 (in Chinese).
王秋红, 马超, 刘著, 等. 西安科技大学学报, 2022, 42(1), 22.
21 Zheng Q X, Liu X C, Wu T W, et al. Journal of Fuel Chemistry and Technology, 2022, 50(6), 747 (in Chinese).
郑泉兴, 刘秀彩, 吴添文, 等. 燃料化学学报, 2022, 50(6), 747.
22 Liang R, Liang Q Y, Li Z B, et al. Journal of Loss Prevention in the Process Industries, 2021, 69, 104380.
23 Xi Z L, Wang X D, Li M T, et al. Combustion Science and Technology, 2020, 193(9), 1.
24 Chen X K, Ma T, Zhai X W, et al. Thermochimica Acta, 2019, 676, 84.
25 Zhang Y, Zhao Y M, Tan Y X, et al. Explosive Materials, 2021, 50(6), 37 (in Chinese).
张云, 赵懿明, 谭迎新, 等. 爆破器材, 2021, 50(6), 37.
26 Huang C Y, Yuan B H, Zhao Q, et al. Journal of Changzhou University (Natural Science Edition), 2020, 32(1), 8 (in Chinese).
黄楚原, 袁必和, 赵齐, 等. 常州大学学报(自然科学版), 2020, 32(1), 8.
27 Zhou J P, Shi Y. Journal of Safety Science and Technology, 2019, 15(2), 39 (in Chinese).
赵江平, 史源. 中国安全生产科学技术, 2019, 15(2), 39.
28 Guan W L, Zhao J Z, Dong C J. Industrial Safety and Environmental Protection, 2021, 47(2), 43 (in Chinese).
关文玲, 赵健章, 董呈杰. 工业安全与环保, 2021, 47(2), 43.
29 Lu H Y, Tian Y J, Xu D P. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 2017, 40(1), 1.
30 Wang G W, Zhang J L, Chang W W, et al. Energy, 2018, 147, 25.
31 Yang G S, Yang Z H, Zhang J L, et al. High Temperature Materials and Processes, 2019, 38(2019), 783.
32 Liu H, Wu S H, Zhao G B, et al. Journal of Harbin Institute of Techno-logy, 2008(3), 419 (in Chinese).
刘辉, 吴少华, 赵广播, 等. 哈尔滨工业大学学报, 2008(3), 419.
33 Yang Z B, Ma Y, Dai X, et al. Electric Power Science and Engineering, 2015, 31(3), 1 (in Chinese).
杨志斌, 马莹, 戴新, 等. 电力科学与工程, 2015, 31(3), 1.
34 Zhang J P, Wang C A, Jia X W, et al. Journal of Chemical Industry and Engineering(China), 2018, 69(8), 3611 (in Chinese).
张锦萍, 王长安, 贾晓威, 等. 化工学报, 2018, 69(8), 3611.
35 Wen H Y, Zhang Y M, Ji D X, et al. Journal of Chemical Industry and Engineering(China), 2020, 71(2), 755 (in Chinese).
温宏炎, 张玉明, 纪德馨, 等. 化工学报, 2020, 71(2), 755.
36 Wang Y C, Zhao J P, Wang Y J, et al. Chemical Industry and Enginee-ring Progress, 2018, 37(5), 1774 (in Chinese).
王亚超, 赵江平, 王玉娇, 等. 化工进展, 2018, 37(5), 1774.
37 Hong C, Yang Q, Wang Z Q, et al. Journal of Chemical Industry and Engineering(China), 2017, 68(1), 360 (in Chinese).
洪晨, 杨强, 王志强, 等. 化工学报, 2017, 68(1), 360.
38 Naidu M R, Kumar G P. Fuel, 2021, 303, 121285.
39 An M, Guo Q J. Atmosphere, 2022, 13(9), 1480.
40 Merdun H, Laougé Z B. Renewable Energy, 2021, 163, 453.
41 Li C. Research on the oxygen dust explosion characteristics and thermal decomposition. Master's Thesis, North University of China, China, 2018 (in Chinese).
李陈. 奥克托今粉尘爆炸特性及其热分解研究. 硕士学位论文, 中北大学, 2018.
42 Doyle C D. Macromolecular Chemistry and Physics, 1964, 80(1), 220.
[1] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[2] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[3] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[4] 林立海, 李处森, 颜雨坤, 白炜琛, 刘利冉, 张劲松. 热解碳泡沫材料吸波机理研究[J]. 材料导报, 2024, 38(1): 22050338-7.
[5] 黄清华, 陈爽, 刘明, 周新远, 黄艳斐, 王海斗. 反应等离子喷涂技术研究现状[J]. 材料导报, 2023, 37(20): 22030146-12.
[6] 李文生, 黄晓龙, 成波, 李建军, 宋强, 赛纽特·乌拉吉米尔. 硅低温热解活化包覆超细金刚石及其抗氧化和分散稳定性[J]. 材料导报, 2023, 37(11): 21120094-6.
[7] 黄艳琴, 甄宇航, 王晨州, 宁晓阳, 刘兰岭, 李凯, 赵莉, 陆强. “双碳”背景下市政污泥热解资源化利用研究进展[J]. 材料导报, 2023, 37(10): 23020016-6.
[8] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[9] 周晶晶, 周军, 吴雷, 杨茸茸, 宋永辉, 张秋利. 生物质供氢体协助低变质煤加氢热解提质的研究进展[J]. 材料导报, 2022, 36(9): 20070237-8.
[10] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[11] 李泽朕, 刘昊, 徐沛瑶, 陈洲江, 王士斌, 陈爱政. 超临界抗溶剂法制备金属氧化物纳米颗粒的研究进展[J]. 材料导报, 2022, 36(3): 20080184-6.
[12] 陈潇, 卢亚磊, 王稷良, 杜新宇. 基于风积沙特性的固化剂组成设计及其固化机理研究[J]. 材料导报, 2022, 36(16): 21110087-8.
[13] 陈彪, 谭静, 付小航, 卢郁静, 朱玥玮, 黄晶, 狄雨萌, 丁延伟. 竹纸老化的热解特性及其老化程度的量化评价[J]. 材料导报, 2022, 36(13): 21040180-5.
[14] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[15] 文渊, 胡珊, 何浏伟. 硼泥碳化法制备碱式碳酸镁的工艺研究[J]. 材料导报, 2021, 35(Z1): 132-136.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed