Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 91-96    https://doi.org/10.11896/j.issn.1005-023X.2017.019.013
  材料综述 |
聚硅氧烷转化制备硅氧碳多孔陶瓷的研究进展*
张军战, 张海昇, 张颖, 贺辉
西安建筑科技大学材料与矿资学院功能材料研究所,西安 710055
Research Developments in the Preparation of Silicon Oxycarbide Porous Ceramics via Pyrolytic Ceramization of Polysiloxanes
ZHANG Junzhan, ZHANG Haisheng, ZHANG Ying, HE Hui
Functional Materials Laboratory, College of Materials & Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 1817KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅氧碳多孔陶瓷耐高温,密度低,比强度高,比表面积大,热导率低,介电性能优良,应用前景广阔。聚合物前驱体转化法已成为颇具前景的陶瓷材料制取手段。文章在简要介绍聚硅氧烷的基础上,从聚硅氧烷热解前、热解过程中以及热解后不同阶段形成特定的孔结构出发,重点阐述了通过聚硅氧烷热解制备硅氧碳多孔陶瓷的工艺研究现状,并提出了亟待解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张军战
张海昇
张颖
贺辉
关键词:  聚硅氧烷  硅氧碳  多孔陶瓷  热解  成孔    
Abstract: Silicon oxycarbide porous ceramics have promising application due to its characteristics of high temperature resis-tance, low density, high specific strength, high specific surface area, low thermal conductivity as well as excellent dielectric properties. Pyrolytic ceramization of preceramic polymer precursors has a bright prospect in producing ceramics. Based on a brief introduction to polysiloxanes, this article reviews the research status of preparing silicon oxycarbide porous ceramics from polysiloxanes, with an emphasis on the specific pore structures formed before, during and after pyrolysis. It also discusses some emerging issues in the field.
Key words:  polysiloxane    silicon oxycarbide    porous ceramic    pyrolysis    porosification
出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TQ174  
基金资助: *西安建筑科技大学人才科技基金项目(RC1705)
作者简介:  张军战:通讯作者,男,1972年生,博士,副教授,主要从事多孔陶瓷工艺、高温结构陶瓷研究 E-mail:xajzzhang@xauat.edu.cn
引用本文:    
张军战, 张海昇, 张颖, 贺辉. 聚硅氧烷转化制备硅氧碳多孔陶瓷的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 91-96.
ZHANG Junzhan, ZHANG Haisheng, ZHANG Ying, HE Hui. Research Developments in the Preparation of Silicon Oxycarbide Porous Ceramics via Pyrolytic Ceramization of Polysiloxanes. Materials Reports, 2017, 31(19): 91-96.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.013  或          https://www.mater-rep.com/CN/Y2017/V31/I19/91
1 Colombo P, Raj R. Preface[M]//Advances in polymer derived ceramics and composites. USA: the American Ceramic Society,2010.
2 Vakifahmetoglu C, Zeydanli D, Colombo P. Porous polymer derived ceramics[J]. Mater Sci Eng R: Rep,2017,106:1.
3 Adler P N. Overview of ARPA low-cost ceramic composites (LC3) program [C]//41st International Symposium of the Society for the Advancement of Material and Process Engineering and Exhibition.Covina,CA,1996.
4 Colombo P. Novel processing of silicon oxycarbide ceramic foams[J]. Adv Eng Mater,1999,1(3-4):203.
5 Kaspar J, Graczyk-Zajac M, Riedel R. Lithium insertion into carbon-rich SiOC ceramics: Influence of pyrolysis temperature on electrochemical properties[J].J Power Sources,2013,244(244):450.
6 Narisawa M, et al. Oxidation process of white Si-O-C(-H) ceramics with various hydrogen contents[J]. Scr Mater,2013,69(8):602.
7 Ma Q S, Chen Z H, Zheng W W, et al. Processing and characterization of particles reinforced Si O C composites via pyrolysis of polysiloxane with SiC or/and Al fillers[J]. Ceram Int,2005,31(8):1045.
8 Bergero L, Sglavo V M, Soraru G D. Processing and thermal shock resistance of a polymer-derived MoSi2 /SiCO ceramic composite[J]. J Am Ceram Soc,2005,88(11):3222.
9 Adam M, Wilhelm M, Grathwohl G. Polysiloxane derived hybrid ceramics with nanodispersed Pt[J]. Microp Mesop Mater,2011,151(11):195.
10 Su Q, Price L, Shao L, et al. Irradiation tolerance of amorphous SiOC/crystalline Fe composite[J]. Mater Lett,2015,155(2):1906.
11 Qiu L, et al. Thermal-conductivity studies of macro-porous polymer-derived SiOC ceramics[J]. Int J Thermophys,2014,35(1):76.
12 Pradeep V S, Ayana D G, Graczyk-Zajac M, et al. High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries[J]. Electrochim Acta,2015,157:41.
13 Narisawa M. Silicone resin applications for ceramic precursors and composites[J]. Materials,2010,3(6):3518.
14 Lu K. Porous and high surface area silicon oxycarbide-based mate-rials—A review[J]. Mater Sci Eng R:Rep,2015,97:23.
15 Ma Y, Ma Q S, Chen Z H. Present sate of prous cramics by peceramic plymer prolysis[J].J Mater Eng,2007(3):62(in Chinese).
马彦, 马青松, 陈朝辉. 先驱体转化法制备多孔陶瓷的发展现状[J]. 材料工程,2007(3):62.
16 Tian H. Fabrication and characterization of highly porous SiOC cera-mics from silicone resin[D].Changsha: University of Defense Tech-nology,2011(in Chinese).
田浩.硅树脂转化制备高孔隙率SiOC多孔陶瓷研究[D]. 长沙:国防科学技术大学,2011.
17 Colombo P. Engineering porosity in polymer-derived ceramics[J]. J Eur Ceram Soc,2008,28(7):1389.
18 Yan X, et al. Phase separation induced macroporous SiOC ceramics derived from polysiloxane[J].J Eur Ceram Soc,2015,35(35):443.
19 Strachota A, Cˇerný M, Chlup Z, et al. Foaming of polysiloxane re-sins with ethanol: A new route to pyrolytic macrocellular SiOC foams[J]. Ceram Int,2015,41(10):13561.
20 Nedunchezhian S, Sujith R, Kumar R. Processing and characterization of polymer precursor derived silicon oxycarbide ceramic foams and compacts[J]. J Adv Ceram,2013,2(4):318.
21 Cˇerný M, Chlup Z, Strachota A, et al. Si O C ceramic foams derived from polymethylphenylsiloxane precursor with starch as foaming agent[J]. J Eur Ceram Soc,2015,35(13):3427.
22 Rocha R M, Moura E A B, Bressiani A H A. SiOC ceramic foams synthesized from electron beam irradiated methylsilicone resin[J].J Mater Sci,2008,43(13):4466.
23 Liu H L, Zhong W W, Mao Y W. Preparation of SiOC foam cera-mics using polysiloxane[J]. Key Eng Mater,2008,368-372:920.
24 Pan J M, Cheng X N, Yan X H, et al. In situ synthesis and growth mechanism of SiC nanowires in SiCO porous ceramics [J]. Inorg Mater,2013,28(5):474(in Chinese).
潘建梅, 程晓农, 严学华, 等. 多孔SiCO陶瓷中SiC纳米线的原位合成及生长机理[J]. 无机材料学报,2013,28(5):474.
25 Colombo P, Modesti M. Silicon oxycarbide ceramic foams from a preceramic polymer[J]. J Am Ceram Soc,1999,82(3):573.
26 Colombo P, Modesti M. Silicon oxycarbide foams from a silicone preceramic polymer and polyurethane[J].J Sol-Gel Sci Technol,1999,14(1):103.
27 Naviroj M, Miller S M, Colombo P, et al. Directionally aligned macroporous SiOC via freeze casting of preceramic polymers[J]. J Eur Ceram Soc,2015,35(8):2225.
28 Zhang H, Nunes P D A, Wilhelm M, et al. Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting[J].J Eur Ceram Soc,2016,36(1):51.
29 Kim Y W, Park C B. Processing of microcellular preceramics using carbon dioxide[J]. Compos Sci Technol,2003,63(16):2371.
30 Takahashi T, et al. SiOC ceramic foams through melt foaming of a methylsilicone preceramic polymer[J].J Porous Mater,2003,10(2):113.
31 Kim Y W, Lee K H, Lee S H, et al. Fabrication of porous silicon oxycarbide ceramics by foaming polymer liquid and compression molding[J]. J Ceram Soc Jpn,2003,111(1299):863.
32 Liu H L, Hu M. Fabrication of SiOC ceramic foam with silicon resin and polyvinyl butyral[J]. Rare Met Mater Eng,2009,38(S2):369(in Chinese).
刘洪丽, 胡明. 以PVB为造孔剂采用硅树脂制备泡沫陶瓷[J]. 稀有金属材料与工程,2009,38(S2):369.
33 Adam M, Kocanis S, Fey T, et al. Hierarchically ordered foams derived from polysiloxanes with catalytically active coatings[J].J Eur Ceram Soc,2014,34(7):1715.
34 Park C B, Wang C M, Wang J, et al. Processing of porous silicon oxycarbide ceramics from extruded blends of polysiloxane and low-density polyethylene[J]. J Ceram Process Res,2009,10(2):238.
35 Kim Y W, Jin Y J, Chun Y S, et al. A simple pressing route to closed-cell microcellular ceramics[J]. Scr Mater,2005,53(8):921.
36 Colombo P, Bernardo E, Biasetto L. Novel microcellular ceramics from a silicone resin[J].J Am Ceram Soc,2004,87(1):152.
37 Shibuya M, Takahashi T, Koyama K. Microcellular ceramics by using silicone preceramic polymer and PMMA polymer sacrificial microbeads[J]. Compos Sci Technol,2007,67(1):119.
38 Kim S H, Kim Y W, Park C B. Effect of inert filler addition on pore size and porosity of closed-cell silicon oxycarbide foams[J]. J Mater Sci,2004,39(10):3513.
39 Eom J H, Kim Y W. Fabrication of silicon oxycarbide foams from extruded blends of polysiloxane, low-density polyethylene (LDPE), and polymer microbead[J]. Met Mater Int,2007,13(6):521.
40 Wang C, et al. Fabrication of cellular and microcellular ceramics with controllable open-cell content from polysiloxane-LDPE blends: I. Compounding and foaming[J]. J Mater Sci,2007,42(8):2854.
41 Kim Y W, Wang C, Park C B. Processing of porous silicon oxycarbide ceramics from extruded blends of polysiloxane and polymer microbead[J]. J Ceram Soc Jpn,2007,115(1343):419.
42 Vakifahmetoglu C, Balliana M, Colombo P. Ceramic foams and micro-beads from emulsions of a preceramic polymer[J]. J Eur Ceram Soc,2011,31(8):1481.
43 Dibandjo P, Graczyk-Zajac M, Riedel R, et al. Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics[J]. J Eur Ceram Soc,2012,32(10):2495.
44 Li J K, Lu K. Highly porous SiOC bulk ceramics with water vapor assisted pyrolysis[J]. J Am Ceram Soc,2015,98(8):2357.
45 Li J K, Lu K, Lin T, et al. Preparation of micro-/mesoporous SiOC bulk ceramics[J]. J Am Ceram Soc,2015,98(6):1753.
46 Duan L Q, Ma Q S, Chen Z H. Etching process of silicon oxycarbide from polysiloxane by chlorine[J]. Corros Sci,2015,94(87):237.
47 Yuan X Y, Jin H L, Yan X B, et al. Synthesis of ordered mesoporous silicon oxycarbide monoliths via preceramic polymer nanocas-ting[J]. Microp Mesop Mater,2012,147(1):252.
48 Duan L Q, Ma Q S, Chen Z H. Preparation and characterization of mesoporous silicon oxycarbide ceramics without free carbon from polysiloxane[J]. J Eur Ceram Soc,2013,33(4):841.
[1] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[2] 周荷雯, 姚敦雪, 杨晴. 废弃塑料热解技术碳足迹研究进展[J]. 材料导报, 2024, 38(14): 22120220-8.
[3] 罗振敏, 张春艳, 杨勇. 氨纶防黄剂粉尘的着火特性分析[J]. 材料导报, 2024, 38(11): 22100095-8.
[4] 林立海, 李处森, 颜雨坤, 白炜琛, 刘利冉, 张劲松. 热解碳泡沫材料吸波机理研究[J]. 材料导报, 2024, 38(1): 22050338-7.
[5] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[6] 李萌, 艾建平, 胡丽玲, 程丽红, 帅亚萍, 罗司玲, 周泽华, 陈智琴, 李文魁. YSZ多孔陶瓷的孔隙结构特征及压缩强度研究[J]. 材料导报, 2023, 37(24): 22060249-7.
[7] 张继生, 米扬, 王艳, 赵磊, 秦甜甜, 孟凡成, 刘国军. 聚(丙烯酸酯-硅氧烷)杂化乳胶粒子的制备及性能[J]. 材料导报, 2023, 37(23): 22060203-6.
[8] 李辉, 姚敏, 赖娟, 马长坡, 吴正德, 邱祖民. 端羟基含氟乙烯基聚硅氧烷的合成及应用[J]. 材料导报, 2023, 37(2): 21040285-6.
[9] 于海博, 梁帅帅, 李疆, 祁斌. 氧化锆多孔陶瓷制备方法研究进展[J]. 材料导报, 2023, 37(13): 21080217-10.
[10] 李文生, 黄晓龙, 成波, 李建军, 宋强, 赛纽特·乌拉吉米尔. 硅低温热解活化包覆超细金刚石及其抗氧化和分散稳定性[J]. 材料导报, 2023, 37(11): 21120094-6.
[11] 黄艳琴, 甄宇航, 王晨州, 宁晓阳, 刘兰岭, 李凯, 赵莉, 陆强. “双碳”背景下市政污泥热解资源化利用研究进展[J]. 材料导报, 2023, 37(10): 23020016-6.
[12] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[13] 余明先, 张景贤. 造孔剂法制备硅藻土基多孔陶瓷及其性能研究[J]. 材料导报, 2022, 36(Z1): 21070121-5.
[14] 周晶晶, 周军, 吴雷, 杨茸茸, 宋永辉, 张秋利. 生物质供氢体协助低变质煤加氢热解提质的研究进展[J]. 材料导报, 2022, 36(9): 20070237-8.
[15] 陈彪, 谭静, 付小航, 卢郁静, 朱玥玮, 黄晶, 狄雨萌, 丁延伟. 竹纸老化的热解特性及其老化程度的量化评价[J]. 材料导报, 2022, 36(13): 21040180-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed