Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21050197-9    https://doi.org/10.11896/cldb.21050197
  高分子与聚合物基复合材料 |
SiC晶片金刚石磨料凝胶抛光盘的制备与性能分析
冯凯萍1,2, 吕冰海2, 王帅3, 赵天晨1, 周兆忠1
1 衢州学院机械工程学院,浙江 衢州 324000
2 浙江工业大学机械工程学院,杭州 310014
3 浙江大学机械工程学院,杭州 310012
Preparation and Performance Analysis of Gel-forming Diamond Abrasive Polishing Disc for Polishing SiC Wafer
FENG Kaiping1,2, LYU Binghai2, WANG Shuai3, ZHAO Tianchen1, ZHOU Zhaozhong1
1 School of Mechanical Engineering, Quzhou University, Quzhou 324000,Zhejiang, China
2 School of Mechanical Engineering, Zhejiang University of Technology,Hangzhou 310014, China
3 School of Mechanical Engineering, Zhejiang University,Hangzhou 310012, China
下载:  全 文 ( PDF ) ( 10178KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对热压成型超细金刚石微粉抛光盘抛光碳化硅晶片时易产生较深表面划痕而导致废片的问题,提出了一种基于聚乙烯醇冷冻-解冻凝胶成形金刚石固着磨料抛光盘的制备方法。采用力学性能测试、红外光谱、摩擦磨损、热重分析等方法对凝胶抛光盘的性能进行表征。研究表明:聚乙烯醇含量大于3%(质量分数,下同)时,聚乙烯醇-酚醛树脂混合胶水可以形成完整凝胶体。当聚乙烯醇含量为5%~6%时,凝胶抛光盘内部形成了大量毛细微孔,孔隙之间相互交错和联通,其抗折强度和抗拉强度最高,平均摩擦系数最大,摩擦系数稳定性最好,其磨料均匀性优于热压抛光盘。随着聚乙烯醇含量的提高,抛光盘表面被树脂结合剂覆盖,抛光盘的塑性越来越大,聚乙烯醇热解对凝胶抛光盘摩擦系数的影响增大,摩擦系数随着摩擦时间的延长开始出现热衰退现象。使用聚乙烯醇含量为5%的凝胶抛光盘抛光SiC晶片,表面平均粗糙度Ra小于2.5 nm,再通过化学机械抛光(CMP)后获得了表面粗糙度Ra小于0.5 nm的超光滑无损表面,抛光效果优于热压抛光盘。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯凯萍
吕冰海
王帅
赵天晨
周兆忠
关键词:  聚乙烯醇(PVA)  酚醛树脂(PF)  凝胶抛光盘  超细金刚石  碳化硅晶片    
Abstract: To solve the problem that ultrafine diamond powder polishing disc using hot pressing method is easy to produce deep scratch on the surface of SiC wafer, a preparation method of ultrafine diamond powder fixed abrasive polishing disc based on polyvinyl alcohol freezing and thawing gel-forming mechanism is proposed. The properties of the gel polishing disc were characterized by mechanical property tests, infrared spectrum, friction wear and thermogravimetric analysis. The results show that when the polyvinyl alcohol content is greater than 3wt%, the polyvinyl alcohol-phenolic resin mixed glue can form a complete gel. When the polyvinyl alcohol content is 5wt%—6wt%, a large number of capillary micropores are formed in the gel polishing disc, the pores are interlaced and interlinked, the gel polishing disc has the highest flexural strength and tensile strength, the highest average friction coefficient, and the best stability of friction coefficient, the uniformity of abrasives is better than that of the hot pressing polishing disc. With the increase of polyvinyl alcohol content, the surface of the gel polishing disc is covered by resin bond, and the plasticity of the gel polishing disc becomes larger, the effect of polyvinyl alcohol pyrolysis on the friction coefficient of the gel polishing disc increases, and the friction coefficient begins to reduce with the increase of friction time. The polishing contrast experiment showed that when the SiC wafer was polished by the gel polishing disc with a polyvinyl alcohol content of 5wt%, the average surface roughness Ra less than 2.5 nm was obtained. After the next chemical mechanical polishing (CMP) process, the surface roughness Ra less than 0.5 nm was obtained, and the polishing effect was better than that of the hot pressing polishing disc.
Key words:  polyvinyl alcohol(PVA)    phenolic resin(PF)    gel polishing disc    ultrafine diamond    SiC wafer
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TG74  
  TH162  
基金资助: 浙江省自然科学基金项目(LZY21E050004);衢州市科技项目(2019K10)
通讯作者:  zzz_2227@163.com   
作者简介:  冯凯萍,2010年6月、2013年1月分别于浙江理工大学和浙江工业大学获得获得工学学士学位和硕士学位,2018年9月至今,浙江工业大学机械工程学院博士研究生在读。现任职于衢州学院机械工程学院,讲师,目前主要研究领域为碳化硅陶瓷、半导体和光学元件的超精密研磨、抛光及加工工具制造。已发表超精密加工相关学术论文5篇,已授权超精密加工相关发明专利13项。
周兆忠,衢州学院机械工程学院教授、硕士研究生导师,享受国务院政府特殊津贴。1997年浙江教育学院数学教育专业本科毕业,2005年浙江工业大学机械电子工程专业硕士毕业,2011年浙江工业大学机械工程专业博士毕业。在国内外学术期刊上发表论文10余篇,申请国家发明专利20余项,其中授权8项。其团队主要研究方向包括:半导体材料超精密加工工艺与装备研究,氧化铝、碳化硅等结构陶瓷精密制造技术研究,轴承滚子超精密加工技术研究,精密砂轮、固着磨料磨具等磨削、研磨及抛光工具制造技术研究。
引用本文:    
冯凯萍, 吕冰海, 王帅, 赵天晨, 周兆忠. SiC晶片金刚石磨料凝胶抛光盘的制备与性能分析[J]. 材料导报, 2022, 36(12): 21050197-9.
FENG Kaiping, LYU Binghai, WANG Shuai, ZHAO Tianchen, ZHOU Zhaozhong. Preparation and Performance Analysis of Gel-forming Diamond Abrasive Polishing Disc for Polishing SiC Wafer. Materials Reports, 2022, 36(12): 21050197-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050197  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21050197
1 Yang X, Sun R Y, Ohkubo Y, et al. Electrochimica Acta, 2018, 271, 666.
2 Lu J, Wang Y G, Luo Q F, et al. Precision Engineering, 2017, 49, 235.
3 Ji J W, Kazuya Y, Deng H. Acta Physica Sinica, 2021, 70(6), 068102 (in Chinese).
吉建伟, 山村和也, 邓辉. 物理学报, 2021, 70(6), 068102.
4 Lu J, Luo Q F, Mao X Y, et al. Precision Engineering. 2017, 47, 353.
5 Wang J H, Deng Q F, Yuan J L, et al. Surface Technology, 2020, 49(6), 314 (in Chinese).
王佳焕, 邓乾发, 袁巨龙, 等. 表面技术, 2020, 49(6), 314.
6 Huang S G, Lu J, Lin Y C, et al. Journal of Sol-gel Science and Techno-logy, 2020, 96, 314.
7 Huo F W, Zhao H H, Zhao D J. Materials and Manufacturing Processes, 2011, 8, 977.
8 Chandra A, Karra P, Bastawros A F, et al. CIRP Annals-Manufacturing Technology, 2008, 57 (1), 559.
9 Kwon T Y, Cho B J, Ramachandran M, et al. Tribology Letters, 2013, 50(2), 169.
10 Ring T A, Feeney P, Boldridge D, et al. Journal of the Electrochemical Society, 2007, 154(3), 239.
11 Suratwala T, Steele R, Feit M D, et al. Journal of Non-Crystalline So-lids, 2007, 354 (18), 2023.
12 Hao S L, Wang X, Cui Y F, et al. Journal of Synthetic Crystals, 2006, 35(2), 342 (in Chinese).
郝顺利, 王新, 崔银芳, 等. 人工晶体学报, 2006, 35(2), 342.
13 Liu H K, Chen C C A, Chen W C. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12), 4755.
14 Lin Y C, Lu J, Tong R L, et al. Diamond and Related Materials, 2018, 83, 46.
15 Lu J, Luo Q F, Song Y Y, et al. Chinese Journal of Mechanical Enginee-ring, 2015, 51(15), 205(in Chinese).
陆静, 罗求发, 宋运运, 等. 机械工程学报, 2015, 51(15), 205.
16 Zhang J, Zhang B G, Zhou X J, et al. Journal of Southwest Forestry University(Natural Science), 2018, 38(4), 173(in Chinese).
张俊, 张本刚, 周晓剑, 等. 西南林业大学学报(自然科学版), 2018, 38(4), 173.
17 Wu Z, Zhu Y F, Chen J P, et al. Modern Manufacturing Engineering, 2019(12), 9(in Chinese).
吴喆, 朱衍飞, 陈俊鹏, 等.现代制造工程, 2019(12), 9.
18 Wang W S, Hu Z W, Zhao H, et al. Optics and Precision Engineering, 2019, 27(1), 69(in Chinese).
王文珊, 胡中伟, 赵欢, 等. 光学精密工程, 2019, 27(1), 69.
19 Yu Y Q, Hu Z W, Wang W S, et al. International Journal of Advanced Manufacturing Technology, 2020, 4, 997 .
20 Wang R, Zhang J H, Chen S Y, et al. Composites Part B: Engineering , 2019, 177, 107383.
21 Li X M, Liu C J, Chen W M, et al. Acta Polymerica Sinica, 1989(5), 519(in Chinese).
李希明, 刘成杰, 陈文明, 等. 高分子学报, 1989(5), 519.
22 Wu L G, Hu S H, Zhang Y T, et al. New Chemical Materials, 2001, 29(11), 18(in Chinese).
吴李国, 胡绍华, 章悦庭, 等. 化工新型材料, 2001, 29(11), 18.
23 Gong G S, Liu J B, Zhong Y P, et al. Chemical Industry and Engineering Progress, 2016, 35(8), 2507(in Chinese).
龚桂胜, 刘景勃, 钟玉鹏, 等. 化工进展, 2016, 35(8), 2507.
24 Chen L Q, Zhang D K, Zhang J S, et al. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 11(48), 9679(in Chinese).
陈立奇, 张德坤, 张劲松, 等. 中国组织工程研究与临床康复, 2007, 11(48), 9679.
25 Meacham R, Liu M, Guo J, et al. Experimental Mechanics, 2020, 8, 1161.
26 Lozinsky V I, Kolosova O Y, Michurov D A, et al. Gels, 2018, 4(4), 81.
27 Nagahata M, Nakaoka R, Teramoto A, et al. Biomaterials, 2005, 26(25), 5138.
28 Fang Z C, Suo J P. Journal of Applied Polymer Science, 2011, 119, 744.
29 Gong R Z, Zhang L, Zhao A J, et al. Adhesion, 2004, 25(1), 36(in Chinese).
龚荣洲, 张凌, 赵爱军, 等. 粘接, 2004, 25(1), 36.
30 Zhu C S, Sun B S. Thermosetting Resin, 2010, 25(1), 23(in Chinese).
朱春山, 孙保帅. 热固性树脂, 2010, 25(1), 23.
31 Jian Y L, Yuan T S, Peng J, et al. Diamond & Abrasives Engineering, 2020, 40(5), 64(in Chinese).
简亚溜, 袁天顺, 彭进, 等. 金刚石与磨料磨具工程, 2020, 40(5), 64.
32 Huang N, Liu L, Wang X Y. Aerospace Materials and Technology, 2012(2), 99(in Chinese).
黄娜, 刘亮, 王晓叶. 宇航材料工艺, 2012(2), 99.
33 Chen H L, Yang X F, Wang S R, et al. Journal of Materials Enginee-ring, 2019, 47(6), 108(in Chinese).
陈海龙, 杨学锋, 王守仁, 等. 材料工程, 2019, 47(6), 108.
[1] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[2] 朱逸军, 刘子同, 袁久刚, 王强, 王平. 以巯基乙酸胆碱为共溶剂的角蛋白/PVA复合膜的一浴法制备及性能[J]. 材料导报, 2020, 34(14): 14187-14190.
[3] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed