Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24147-24151    https://doi.org/10.11896/cldb.20120043
  金属与金属基复合材料 |
254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响
刘成龙1, 唐正友1,2, 马亮1, 马婉婉1, 郭昊东1, 丁桦1,2
1 东北大学材料科学与工程学院,沈阳 110819
2 辽宁省轻量化用关键金属结构材料重点实验室,沈阳 110819
Investigation on the Aging Precipitation Behavior of 254SMo Super Austenitic Stainless Steel and the Effect of Precipitation on Its Mechanical Properties
LIU Chenglong1, TANG Zhengyou1,2, MA Liang1, MA Wanwan1, GUO Haodong1, Ding Hua1,2
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Key Laboratory of Lightweight Structural Materials, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 3747KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用光学显微镜、扫描电子显微镜、能谱仪和透射电子显微镜,研究了不同时效处理温度对254SMo超级奥氏体不锈钢的析出行为以及析出相对其力学性能的影响。结果表明,254SMo奥氏体不锈钢中的χ相呈颗粒状分布,χ相的析出敏感温度为800 ℃;σ相呈条状分布,析出的敏感温度为900 ℃。χ相和σ相均为富Mo和低Ni化合物,σ相中的Mo含量高于χ相。时效温度为900 ℃时,实验钢中的析出相数量最多,实验钢的抗拉强度最高,为825 MPa;延伸率最低,为31%。结合试样断口分析结果表明,相比χ相,σ相对实验钢塑性的危害更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘成龙
唐正友
马亮
马婉婉
郭昊东
丁桦
关键词:  254SMo超级奥氏体不锈钢  时效温度  高温析出相  力学性能    
Abstract: The effect of different aging treatment temperature on the precipitation behavior of 254SMo super austenitic stainless steel and the effect of precipitation on its mechanical properties were studied by optical microscope(OM), scanning electron microscope (SEM) with energy dispersive spectrometer (EDS), and transmission electron microscope(TEM). The results show that the χ phase is distributed in granular form in 254SMo austenitic stainless steel, the precipitation sensitive temperature of χ phase is 800 ℃; the σ phase is distributed in strips, and the precipitation sensitive temperature is 900 ℃. Both the χ phase and the σ phase are Mo-rich and low-Ni compounds, and the Mo content in the σ phase is higher than that in the χ phase. When the aging temperature is 900 ℃, the number of precipitated phases in the experimental steel reaches the maximum, and the tensile strength of the experimental steel is the highest, the value is 825 MPa, and the elongation is the lowest, the value is 31%. The results of the fracture analysis of the sample show that, compared to the χ phase, σ phase is more harmful to the plasticity of the experimental steel.
Key words:  254SMo super austenitic stainless steel    aging temperature    high temperature precipitated phase    mechanical properties
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金项目(51874088);中央高校基本科研业务专项资金(N2002015)
通讯作者:  tangzy@smm.neu.edu.cn   
作者简介:  刘成龙,2018年9月至今,就读于东北大学材料科学与工程学院,硕士研究生。主要从事超级奥氏体不锈钢组织性能的研究。唐正友,东北大学材料科学与工程学院教授,博士研究生导师。2008年毕业于东北大学,材料加工系博士。同年加入东北大学材料科学与工程学院工作至今,在国内外学术期刊上发表论文60余篇,SCI收录30余篇,EI收录20余篇,获得专利2项。主要研究方向包括:先进汽车材料的开发与研究、材料成形及组织性能控制、高温合金等。
引用本文:    
刘成龙, 唐正友, 马亮, 马婉婉, 郭昊东, 丁桦. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J]. 材料导报, 2021, 35(24): 24147-24151.
LIU Chenglong, TANG Zhengyou, MA Liang, MA Wanwan, GUO Haodong, Ding Hua. Investigation on the Aging Precipitation Behavior of 254SMo Super Austenitic Stainless Steel and the Effect of Precipitation on Its Mechanical Properties. Materials Reports, 2021, 35(24): 24147-24151.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120043  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24147
1 Sun C Q. Process Equipment & Piping, 2000, 37(1), 52(in Chinese).
孙长庆. 化工设备与管道, 2000, 37(1), 52.
2 Sun C Q. Process Equipment & Piping, 1999, 36(6), 3(in Chinese).
孙长庆. 化工设备设计, 1999, 36(6), 3.
3 Han Y, Chen X D, Liu Q K, et al. Journal of Mechanical Engineering, 2012, 48(2), 87(in Chinese).
韩豫, 陈学东, 刘全坤, 等. 机械工程学报, 2012, 48(2), 87.
4 Sun J L, Zou D, Jin J, et al. Chinese Journal of Materials Research, 2017, 31(9), 665(in Chinese).
孙京丽, 邹丹, 金晶, 等. 材料研究学报, 2017, 31(9), 665.
5 Hoseini A A, ZareiH A. Journal of Materials Science & Technology, 2009, 25(5), 603.
6 Hänninen H, Romu J, Ilola R, et al. Journal of Materials Processing Technology, 2001, 117(3), 424.
7 Wang K, Chen A Y. Hot Working Technology, 2020, 49(12), 1(in Chinese).
王坤, 陈爱英. 热加工工艺, 2020, 49(12), 1.
8 Phillips N S L,Chumbley L S, Gleeson B. Journal of Materials Enginee-ring & Performance, 2009, 18(9), 1285.
9 Popov A A, Bannikova A S, Belikov S V. Physics of Metals & Metallography, 2009, 108(6), 586.
10 Shin J H, Kim H S, Kong B S, et al. Materials Science and Engineering, A, 2020, DOI:10.1016/j.msea.2020.138986.
11 Saucedo-Muñoz M L, Lopez-Hirata V M, Avila-Davila E O, et al. Materials Characterization, 2009, 60(8), 829.
12 Anburaj J, Nazirudeen S S M, Narayanan R, et al. Materials Science & Engineering A, 2012, 535 99.
13 Lee T H, Kim S J, Jung Y C. Metallurgical & Materials Transactions A, 2000, 31(7), 1713.
14 Ren J B, Song Z G, Zheng W J, et al. Hot Working Technology, 2012, 41(12), 173(in Chinese).
任建斌, 宋志刚, 郑文杰, 等. 热加工工艺, 2012, 41(12), 173
15 Chao D Y, Xu Y G, Sun Y Z, et al. Materials Reports, 2019, 33(Z1), 369.
晁代义, 徐仁根, 孙有政, 等. 材料导报, 2019, 33(Z1), 369.
16 Lu P P, Wang A Q, Xie J P, et al. Materials Review B: Research Papers, 2017, 31(8), 76.
卢盼盼, 王爱琴, 谢敬佩, 等. 材料导报:研究篇, 2017, 31(8), 76.
17 Pohl M, Storz O,Glogowski T. Materials Characterization, 2007, 58(1), 65.
18 Pan K, Chen H T, Lang Y P, et al. Heat Treatment of Metals, 2014, 39(11), 72(in Chinese).
潘坤, 陈海涛, 郎宇平, 等. 金属热处理, 2014, 39(11), 7.
19 Dyja D, Stradomski Z, Pirek A. Strength of Materials,2008,40(1),122.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[7] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[8] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[9] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[10] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[11] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[12] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[13] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[14] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[15] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed