Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21120062-5    https://doi.org/10.11896/cldb.21120062
  金属与金属基复合材料 |
C/C复合材料钎焊接头应力场的有限元分析
李胜男1,2,3, 路全彬3, 都东1, 孙华为4, 周许升3, 龙伟民1,3,4,*
1 清华大学机械工程系,北京 100084
2 中国石油集团工程材料研究院有限公司,石油管材及装备材料服役行为与结构安全国家重点实验室,西安 710077
3 郑州机械研究所有限公司,新型钎焊材料与技术国家重点实验室,郑州 450001
4 中国机械总院集团宁波智能机床研究院有限公司,浙江 宁波 315700
Finite Element Analysis of Stress Field of C/C Composite Brazed Joint
LI Shengnan1,2,3, LU Quanbin3, DU Dong1, SUN Huawei4, ZHOU Xusheng3, LONG Weimin1,3,4,*
1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2 State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi’an 710077, China
3 State Key Laboratory of Advanced Brazing Filler Metals & Technology, Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou 450001, China
4 China Academy of Machinery Ningbo Academy of Intelligent Machine Tool Co., Ltd., Ningbo 315700, Zhejiang, China
下载:  全 文 ( PDF ) ( 10244KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 异种材料钎焊接头中的残余应力是接头连接质量低的主要原因之一。本工作基于热-弹-塑性理论,以Abaqus有限元软件为平台,采用数值模拟计算的方法,研究C/C-C/C、C/C-TiAl同种及异种材料钎焊接头残余应力状态,揭示应力分布对接头连接性能的影响。结果表明:不同钎焊接头中,等效应力大小和分布状态不同。同种材料接头中应力集中分布在钎缝和C/C复合材料钎焊面棱角处,从外向内逐渐减小;异种材料接头中,应力集中在靠近钎缝区域的C/C复合材料上,从内向外逐渐减小。影响接头性能的应力主要为钎缝轴向正应力和垂直于轴向的切应力。同种材料接头中残余应力较小,C/C复合材料受轴向拉应力几乎为零,影响其连接性能的主要是切应力。异种材料接头中残余应力较高,C/C复合材料中最大轴向拉应力分布在棱角位置,最大切应力分布在钎焊面内部。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李胜男
路全彬
都东
孙华为
周许升
龙伟民
关键词:  C/C复合材料  异种材料钎焊接头  有限元模拟  残余应力    
Abstract: Residual stress in brazed joint of dissimilar materials is one of the main reasons which result in low joint quality. The magnitude and distribution of residual stress in brazed joints of C/C composite and C/C composite, C/C composite and TiAl alloy were studied by numerical simulation method based on thermal-elastic-plastic theory and finite element software Abaqus as a platform. Furthermore, the influence of stress distribution on joint performance was revealed. Different Von Mises stress distribution and state appeared in different brazed joints. In C/C-C/C brazed joint, Von Mises stress was concentrated at the brazing seam, the edges and corners of C/C composite’s brazed surface, and gradually decreased from the outside to the inside. In C/C-TiAl brazed joint, the stress was concentrated on C/C composite where adjacent the brazing seam, and gradually decreased from inside to outside. The joint strength of brazed joint was mainly affected by the axial normal stress and the shear stress perpendicular to the axial direction. The residua stress of C/C-C/C brazed joint was lower, its axial tensile stress was almost zero, therefore the join strength of brazed joint was mainly affected by the shear stress. The residual stress of C/C-TiAl brazed joint was much higher, in C/C composite the maximum axial tensile stress was distributed at the edges, and the maximum shear stress was distributed inside of the brazed surface.
Key words:  carbon/carbon composite    brazed joint of dissimilar materials    finite element simulation    residual stress
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG404  
基金资助: 国家自然科学基金(U2004186);宁波市科技创新“2025”重大专项(2020Z111)
通讯作者:  * 龙伟民,博士、研究员、博士研究生导师、新型钎焊材料与技术国家重点实验室主任、国家“万人计划”科技创新领军人才、国务院特贴专家。主要从事绿色焊接技术及数字化制造装备的研发及产业化推广,在国内外学术期刊上发表论文320余篇,出版专著18部、授权发明专利96项,获Davis奖、Emerald奖,作为第一完成人获国家科技进步二等奖1项、中国专利优秀奖5项,荣获全国创新争先奖。brazelong@163.com   
作者简介:  李胜男,博士,中国石油集团工程材料研究院有限公司,石油管材及装备材料服役行为与结构安全国家重点实验室工程师。2013年7月、2016年6月、2022年6月分别于天津理工大学、中国航空研究院、清华大学获得工学学士学位、工学硕士学位、工学博士学位。目前主要从事油气管道材料及其应用技术方向的研究工作。发表论文16篇,授权发明专利3项。
引用本文:    
李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
LI Shengnan, LU Quanbin, DU Dong, SUN Huawei, ZHOU Xusheng, LONG Weimin. Finite Element Analysis of Stress Field of C/C Composite Brazed Joint. Materials Reports, 2023, 37(1): 21120062-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120062  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21120062
1 Albano M, Delfini A, Pastore R, et al. Acta Astronautica, 2016, 128, 277.
2 Devi G R, Rao K R. Defence Science Journal, 1993, 43(4), 369.
3 Yamaguchi M, Inui H, Ito K. Acta Materialia, 2000, 48(1), 307.
4 Li S N, Du D, Zhang L, et al. Materials, 2021, 14(8), 1844.
5 Li S N, Lu Q B, Du D, et al. Welding in the World. 2022, 66(1), 61.
6 Yi R X, Chen C, Shi C, et al. Ceramics International, 2021, 47, 20807.
7 Zhang X Y, Zhang F Q, Xia L H, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(5), 1298(in Chinese).
张小英, 张福勤, 夏莉红, 等. 中国有色金属学报, 2012, 22(5), 1298.
8 Wang Y L, Wang W L, Huang J H, et al. Journal of Materials Processing Technology, 2021, 288, 116886.
9 Qin Y Q. Study on microstructure and mechanical properties of C/C composite and TC4 brazed joint. Ph. D. Thesis, Harbin Institute of Technology, China, 2007(in Chinese).
秦优琼. C/C复合材料与TC4钎焊接头组织及性能研究. 博士学位论文, 哈尔滨工业大学, 2007.
10 Ba J, Wang Y H, Liu Y L, et al. Vacuum, 2017, 143, 303.
11 Yang Z W, Wang C L, Han Y, et al. Carbon, 2019, 43, 494.
12 Guo W, Li K, Zhang H Q, et al. Ceramics International, 2022, 48(4), 5260.
13 Ba J, Ji X, Wang B, et al. Journal of Materials Science and Technology, 2022, 104, 33.
14 Ba J, Wang B, Ji X, et al. Ceramics International, 2020, 46, 14232.
15 Qi J L, Ba J, Li H, et al. Vacuum, 2020, 172, 109102.
16 Ba J, Ji X, Wang B, et al. Journal of Manufacturing Process, 2021, 67, 52.
17 Li S N, Du D, Zhang L, et al. Reviews on Advanced Materials Science, 2021, 60, 92.
18 Wang G, Jiao G Q, Li J. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(12), 1807(in Chinese).
王刚, 矫桂琼, 李俊. 机械科学与技术, 2013, 32(12), 1807.
19 Deng J Y, Liu W C, Du H F. Chinese Journal of Materials Research, 2001, 15(3), 372(in Chinese).
邓景屹, 刘文川, 杜海峰. 材料研究学报, 2001, 15(3), 372.
20 Jiang W C, Gong J M, Chen H, et al. Acta Metallurgica Sinica, 2008, 44(1), 105(in Chinese).
蒋文春, 巩建鸣, 陈虎, 等. 金属学报, 2008, 44(1), 105.
21 Liu W S, Huang B Y, Zhou K Z, et al. Materials Reports, 2000, 14(9), 19(in Chinese).
刘文胜, 黄伯云, 周科朝, 等. 材料导报, 2000, 14(9), 19.
22 Sung S Y, Kim Y J. Intermetallics, 2007, 15, 468.
23 Hu H T, Zhang X W, Zhu C L, et al. Chinese Journal of Rare Metals, 2017, 41(7), 751(in Chinese).
胡海涛, 张熹文, 朱春雷, 等. 稀有金属, 2017, 41(7), 751.
[1] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[2] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[3] 魏贺冉, 闫联生, 孙建涛. 离子推力器栅极材料的发展现状[J]. 材料导报, 2022, 36(22): 22050099-6.
[4] 李刚, 李中双, 符伟, 谭俊哲, 杨康. 焊接顺序对管状大厚度V形接头焊接残余应力场的影响[J]. 材料导报, 2021, 35(z2): 325-328.
[5] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[6] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[7] 王力, 王海斗, 底月兰, 赵运才, 董丽虹, 李帅. 热障涂层应力产生机制及分布特征[J]. 材料导报, 2021, 35(17): 17143-17149.
[8] 王麒, 冯瑞成, 樊礼赫, 邵自豪, 董建勇. 切削深度对单晶γ-TiAl合金亚表面缺陷及残余应力的影响[J]. 材料导报, 2021, 35(14): 14089-14095.
[9] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[10] 刘明霞, 王冬, 张文康, 畅庚榕, 刘道新, 徐可为. 喷丸强化对17-4PH不锈钢室温及高温疲劳性能的影响[J]. 材料导报, 2020, 34(22): 22124-22129.
[11] 乔及森, 芮正雷, 王磊, 陈振文. 基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究[J]. 材料导报, 2020, 34(22): 22142-22147.
[12] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[13] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[14] 权国政, 施瑞菊, 刘乔, 赵江, 周杰, 王月乔. 电弧熔丝单层单道积材残余应力模拟分析及锤击消除研究[J]. 材料导报, 2020, 34(14): 14154-14160.
[15] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed