Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21040054-5    https://doi.org/10.11896/cldb.21040054
  金属与金属基复合材料 |
金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发
王挺1, 高业栋1,2, 恽迪1,3, 王冠4,5, 周毅2, 张坤2, 郭子萱2, 吕亮亮2
1 西安交通大学核科学与技术学院,西安 710049
2 中国核动力研究设计院,成都 610213
3 西安交通大学动力工程多相流国家重点实验室,西安 710049
4 中国科学院近代物理研究所,兰州 730000
5 中国科学院大学,北京 100049
Improvement of Metal Fuel Irradiation Model on Porosity and Development of Metal Fuel Performance Analysis Code for Fast Neutron Reactor
WANG Ting1, GAO Yedong1,2, YUN Di1,3, WANG Guan4,5, ZHOU Yi2, ZHANG Kun2, GUO Zixuan2, LYU Liangliang2
1 School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
2 Nuclear Power Institute of China, Chengdu 610213, China
3 State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
4 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
5 University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 3053KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着钠冷快堆及铅冷快堆的发展,金属燃料的应用前景初步显现,开发适用于钠冷快堆金属燃料的性能分析程序对快堆金属燃料的发展和应用具有重要意义。本工作在调研总结了燃料芯体的孔隙率对导热系数、力学参数的影响后,提出了新的金属燃料芯体导热系数和力学参数模型。此外,在参考金属燃料相关文献中金属燃料的其他辐照行为模型后,本工作改进了传热模型及力学模型,利用FORTRAN-90开发了适用于钠冷快堆棒状金属燃料的燃料性能分析程序,该程序可用于预测典型的金属燃料辐照行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王挺
高业栋
恽迪
王冠
周毅
张坤
郭子萱
吕亮亮
关键词:  孔隙率  热导率  杨氏模量  快堆  金属核燃料  性能分析程序    
Abstract: With the development of sodium-cooled fast reactors and lead-cooled fast reactors, the application prospect of metal fuel has initially appeared. The development of metal fuel performance analysis code suitable for sodium-cooled fast reactors is of great significance to the development and application of metal fuels. After investigating and summarizing the influence of the porosity of the pellet on the thermal conductivity and mechanical properties, a new model of the thermal conductivity and mechanical properties of the pellet is proposed. In addition, the heat transfer model and mechanical model were improved after referring to other radiation behavior models of metal fuel in related literatures, a fuel performance analysis code suitable for sodium-cooled fast reactor rod metal fuels was developed using FORTRAN-90. This code can be used to predict typical irradiation behaviors of metal fuels.
Key words:  porosity    thermal conductivity    Young's modulus    fast neutron reactor    metallic nuclear fuel    performance analysis code
发布日期:  2022-06-09
ZTFLH:  TL352  
通讯作者:  diyun1979@xjtu.edu.cn   
作者简介:  王挺,西安交通大学硕士研究生,在恽迪教授的指导下进行研究学习,目前研究方向为快中子反应堆金属燃料性能分析仿真。
恽迪,西安交通大学教授、博士研究生导师。2001年本科毕业于清华大学工程物理系,2010年5月获美国伊利诺伊大学香槟分校博士学位。2010年6月至2015年8月担任美国阿贡国家实验室工程师。2015年9月起归国就任于西安交通大学核科学与技术学院,入选2017年国家海外高层次人才引进计划,2017年陕西省百人计划等。主要从事核能相关的研究工作,研究方向涉及核燃料与材料的实验表征、事故容错核燃料开发以及核燃料性能仿真、裂变气体行为分析等,发表SCI论文 30余篇。
引用本文:    
王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
WANG Ting, GAO Yedong, YUN Di, WANG Guan, ZHOU Yi, ZHANG Kun, GUO Zixuan, LYU Liangliang. Improvement of Metal Fuel Irradiation Model on Porosity and Development of Metal Fuel Performance Analysis Code for Fast Neutron Reactor. Materials Reports, 2022, 36(11): 21040054-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040054  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21040054
1 Crawford D C, Porter D L, Hayes S L. Journal of Nuclear Materials, 2007,371(1),202.
2 Ogata T, Kim Y S, Yacout A M.Comprehensive Nuclear Materials, 2012,3(1),713.
3 Billone M C, Liu Y Y, Gruber E E, et al.In:Reliable fuels for liquid metal reactors, Tucson, Arizona, 1986.
4 Kobayashi T, Kinoshita M, Hattori S, et al.Nuclear Technology, 1990,89(2),183.
5 Ogata T, Yokoo T.Nuclear Technology, 1999,128(1),113.
6 Hwang W, Nam C, Byun T S, et al.Nuclear Technology, 1998,123(2),130.
7 Karahan A. Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors. Ph.D.Thesis, Massachusetts Institute of Technology, USA, 2010.
8 Bauer T H.International Journal of Heat and Mass Transfer, 1993,36(17),4181.
9 Yun D, Stan M.Journal of Materials Research, 2013,28(17),2308.
10 Hu S, Henager C H, Heinisch H L, et al. Journal of Nuclear Materials, 2009,392(2),292.
11 Frost B.Journal of Nuclear Materials, 1977,68(1),124.
12 Yacout A M, Salvatores S, Orechwa Y. Nuclear Technology, 1996,113(2),177.
[1] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[2] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[3] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[4] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[5] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[6] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[7] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[8] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[9] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[10] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[11] 曹忠亮, 郭登科, 林国军, 韩振宇, 富宏亚. 热塑性纤维铺放构件的层间剪切强度及孔隙率[J]. 材料导报, 2021, 35(18): 18205-18209.
[12] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[13] 马超, 王静, 冀志江, 王永超, 解帅, 李衎, 李飞. 赤藓糖醇基复合相变材料的研究进展[J]. 材料导报, 2021, 35(11): 11179-11187.
[14] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[15] 李嘉鹏, 李威翰, 刘嘉良, 李永玲, 李飞. 透水路面制品渗透性能的研究进展[J]. 材料导报, 2020, 34(Z2): 265-268.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed