A Review of Erythritol-based Composite Phase Change Materials
MA Chao1, WANG Jing*, JI Zhijiang1, WANG Yongchao1, XIE Shuai1, LI Kan2, LI Fei3
1 State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China; 2 The Third Logistics Department, the Central Military Commission, Beijing 100011, China; 3 Unit No. 32378 of Chinese People’s Liberation Army, Beijing 100072, China;
Abstract: Phase change heat storage using the latent heat for energy absorption, storage and release, can reasonably and effectively use the existing energy, optimize the use of renewable resources and improve the energy utilization efficiency. Erythritol with a phase transition temperature of about 118 ℃ and a latent heat of about 314 J/g, has the advantages of high energy storage density, non-corrosiveness, etc. It is a promising phase change material in the field of medium temperature energy storage, which is widely used in solar energy storage, industrial waste heat recovery, clean heating and other fields. However, erythritol has severe supercooling, and its thermal conductivity is relatively lower. These shortcomings make it impossible to release heat energy in time, resulting in low heat energy utilization efficiency, which greatly limits the application of erythritol in energy storage. The deve-loping composite material preparation technology provides a new method for improving the supercooling and thermal conductivity of erythritol. While retaining the excellent properties of erythritol, it also mitigates the defects of severe supercooling and low thermal conductivity. At present, the preparation of erythritol composite phase change materials has become the main method to improve its performance, and achieved remarkable results. Supercooling is controlled by introducing nucleating agents to reduce the nucleation barrier and promote nucleation. A number of nucleating agents, including nano-metals and their oxides, expanded graphite, graphite foam, etc., have been proven capable of reducing the supercooling of erythritol, in which the best reduction effect, according to the available literature, is 93%. Keeping erythritol in the supercooled metastable state for a long time is the key to utilize its high supercooling characteristics for cross-season energy storage applications. However, the technology is still under research and deserves optimization. Through adding highly thermally conductive materials and increasing the heat transfer area of the phase change regenerator, the equivalent thermal conductivity of erythritol can be increased and can reach up to 30 W/(m·K), resulting in a significant enhancement of heat utilization efficiency. The phase equilibrium theory provides ideas for adjusting the phase transition temperature of erythritol. The eutectic phase change materials with adjustable phase transition temperature in the range of 70—120 ℃ and latent heat greater than 200 J/g can be prepared by selecting appropriate organic phase change materials. This article briefly summarizes the common preparation techniques of erythritol-based composite phase change materials, and respectively reviews the methods to inhibit the supercooling performance and improve thermal conductivity of erythritol, as well as how to utilize the high supercooling of erythritol. It also summarizes the methods of adjusting the phase transition temperature of erythritol, and comparatively analyzes the advantages of erythritol-based composite phase change materials in practical application.
马超, 王静, 冀志江, 王永超, 解帅, 李衎, 李飞. 赤藓糖醇基复合相变材料的研究进展[J]. 材料导报, 2021, 35(11): 11179-11187.
MA Chao, WANG Jing, JI Zhijiang, WANG Yongchao, XIE Shuai, LI Kan, LI Fei. A Review of Erythritol-based Composite Phase Change Materials. Materials Reports, 2021, 35(11): 11179-11187.
Du Y P, Ding Y L. Chemical Engineering and Processing: Process Intensification,2016,108,181.
2
Chen Y, Jiang Q H, Xin J W, et al. Journal of Materials Engineering,2019,47(7),1(in Chinese).
陈颖,姜庆辉,辛集武,等.材料工程,2019,47(7),1.
3
Mustaffar A, Harvey A, Reay D. Applied Thermal Engineering,2015,90,1052.
4
Wang B Y, Han Z T, Liu S G. Building Energy and Environment,2019,38(2),46(in Chinese).
王博雅,韩志涛,刘曙光.建筑热能通风空调,2019,38(2),46.
5
Zhang Y L, Song P F, Zhou W, et al. Energy Storage Science and Technology,2017,6(6),1250(in Chinese).
张叶龙,宋鹏飞,周伟,等.储能科学与技术,2017,6(6),1250.
6
Pomianowski M, Heiselberg P, Zhang Y. Energy and Buildings,2013,67(4),56.
7
Guo J W, Jiang Y Q, Wang Y, et al. Energy Conversion and Management,2020,205,112288.
8
Yau Y H, Lee S K. Applied Energy,2010,87(8),2699.
9
Sun Q R, Zhang N, Zhang H Q, et al. Renewable Energy,2020,145,2629.
10
Wang W L, He S Q, Guo S P, et al. Energy Conversion and Management,2014,83,306.
11
Wang Y, Li S, Zhang T, et al. Solar Energy Materials and Solar Cells,2017,171,60.
12
Gao L H, Zhao J, An Q S, et al. Applied Thermal Engineering,2017,113,858.
13
H?hlein S, K?nig?Haagen A, Brüggemann D, et al. Materials,2017,10(4),444.
14
Sari A, Eroglu R, Bicer A, et al. Chemical Engineering and Technology,2011,34(1),87.
15
Karthik M, Faik A, Blanco?Rodríguez P, et al. Carbon, 2015, 94,266.
16
Shukla A, Buddhi D, Sawhney R L. Renewable Energy, 2008, 33(12),2606.
17
Narayanan S S, Kardam A, Kumar V, et al. Resource?efficient Technologies,2017,3(3),272.
18
Nakano K, Masuda Y, Daiguji H. The Journal of Physical Chemistry C,2015,119(9),4769.
19
Fang M T, Zhang X L, Ji J, et al. Energy Storage Science and Technology,2019,8(4),709(in Chinese).
房满庭,章学来,纪珺,等.储能科学与技术,2019,8(4),709.
20
Yuan M D, Ye F, Xu C. Energy Procedia,2019,158,4629.
21
Shen S L, Tan S J, Wu S, et al. Energy Conversion and Management,2018,157,41.
22
Vivekananthan M, Amirtham V A. Thermochimica Acta,2019,676,94.
23
Che H S, Chen Q Q, Zhong Q, et al. Energy Storage Science and Technology,2017,6(4),644(in Chinese).
车海山,陈迁乔,钟秦,等.储能科学与技术,2017,6(4),644.
24
Sheng Q, Xing Y M, Wang Z. Journal of Chemical Industry and Engineering (China),2013,64(10),3565(in Chinese).
盛强,邢玉明,王泽.化工学报,2013,64(10),3565.
25
Shao X F, Feng B, Hu N, et al. Journal of Zhejiang University (Engineering Science),2018,52(1),50(in Chinese).
邵雪峰,冯飙,胡楠,等.浙江大学学报(工学版),2018,52(1),50.
26
Zhang X L, Ding J H, Luo X X, et al. Journal of Refrigeration,2016,37(1),70(in Chinese).
章学来,丁锦宏,罗孝学,等.制冷学报,2016,37(1),70.
27
Deng Y, Li J H, Deng Y X, et al. ACS Sustainable Chemistry and Engineering,2018,6(5),6792.
28
Ona E P, Ozawa S, Kojima Y, et al. Journal of Chemical Engineering of Japan,2003,36(7),799.
29
Ona E P, Zhang X, Ozawa S, et al. Journal of Chemical Engineering of Japan,2002,35(3),290.
30
Herlach D. Journal of Alloys and Compounds,2010,509,S13.
31
He Q B, Tong M W, Liu Y D. Materials Reports,2007,21(5),42(in Chinese).
何钦波,童明伟,刘玉东.材料导报,2007,21(5),42.
32
Jesus A J L, Nunes S C C, Silva M R, et al. International Journal of Pharmaceutics,2010,388(1?2),129.
33
Shao X F, Zhu Z Q, Wu J, et al. Journal of Engineering Thermophysics,2019,40(1),10(in Chinese).
邵雪峰,朱子钦,吴杰,等.工程热物理学报,2019,40(1),10.
34
Zhang X L, Li C L, Chen X D, et al. Journal of Engineering Thermophysics,2014,35(12),2334(in Chinese).
章学来,李春蕾,陈旭东,等.工程热物理学报,2014,35(12),2334.
35
Zhang X L, Zhou P F, Xu W W, et al. Journal of Refrigeration,2017,38(3),108(in Chinese).
章学来,周鹏飞,徐蔚雯,等.制冷学报,2017,38(3),108.
36
Wang W, Zhang X L, Han Z, et al. Chemical Engineering (China),2012,40(10),21(in Chinese).
王为,章学来,韩中,等.化学工程,2012,40(10),21.
37
Yuan M D, Ren Y X, Xu C, et al. Renewable Energy,2019,136,211.
38
Xun J H. Experimental study on preparation and the thermal storage performances of erythritol composite phase change material. Master's Thesis, Dalian University of Technology, China,2018(in Chinese).
徐家慧.赤藻糖醇复合相变材料的制备及其储热性能研究.硕士学位论文,大连理工大学,2018.
39
Zhang H, Duquesne M, Godin A, et al. Fluid Phase Equilibria,2017,436,55.
40
Sepp?l? A, Meril?inen A, Wikstr?m L, et al. Experimental Thermal and Fluid Science,2010,34(5),523.
41
Zhang H C, van Wissen R M J, Nedea S V, et al. In: Eurotherm Seminar #99 Advances in Thermal Energy Storage. Elsevier, Cambridge,2014.
42
Puupponen S, Mikkola V, Ala?Nissila T, et al. Applied Energy,2016,172,96.
43
Feng B, Shao X F, Zhu Z Q,et al. Journal of Chemical Industry and Engineering (China),2018,69(6),2388(in Chinese).
冯飙,邵雪峰,朱子钦,等.化工学报,2018,69(6),2388.
44
Inagaki T, Ishida T. The Journal of Physical Chemistry C,2016,120(15),7903.
45
Feng B, Fan L W, Zeng Y, et al. International Journal of Thermal Sciences,2019,146,106103.
46
Horrocks J K, Mclaughlin E. Transactions of the Faraday Society,1960,56(197),206.
47
Zhang P, Xiao X, Ma Z W. Applied Energy,2016,165,472.
48
Du B X, Kong X X, Xiao M, et al. Transactions of China Electrotechnical Society,2018,33(14),3149(in Chinese).
杜伯学,孔晓晓,肖萌,等.电工技术学报,2018,33(14),3149.
49
Halté V, Bigot J Y, Palpant B, et al. Applied Physics Letters,1999,75(24),3799.
50
Ding Q, Fang X, Fan L W, et al. Energy Storage Science and Technology,2014,3(3),250(in Chinese).
丁晴,方昕,范利武,等.储能科学与技术,2014,3(3),250.
51
Kibria M A, Anisur M R, Mahfuz M H, et al. Energy Conversion and Management,2015,95,69.
52
Xu Z, Hou J, Wan S Q, et al. Energy Storage Science and Technology,2020,9(1),109(in Chinese).
徐众,侯静,万书权,等.储能科学与技术,2020,9(1),109.
53
Luo Z C, Zhang Q, Wu G H. International Journal of Heat and Mass Transfer,2015,80,653.
54
Oya T, Nomura T, Okinaka N, et al. Applied Thermal Engineering,2012,40,373.
55
Shin H K, Rhee K Y, Park S J. Composites Part B, Engineering,2016,96,350.
56
Lee S Y, Shin H K, Park M, et al. Carbon,2014,68,67.
57
Zhang Q, Luo Z, Guo Q, et al. Energy conversion and management,2017,136,220.
58
Oya T, Nomura T, Tsubota M, et al. Applied Thermal Engineering,2013,61(2),828.
59
Sheng N, Dong K, Zhu C, et al. Materials Chemistry and Physics,2019,229,87.
60
Nomura T, Tsubota M, Oya T, et al. Applied Thermal Engineering,2013,61(2),28.
61
Kaizawa A, Maruoka N, Kawai A, et al. Heat and Mass Transfer,2008,44(7),763.
62
Wang W, He S, Guo S, et al. Energy Conversion and Management,2014,83,306.
63
Meng F. Experimental study and numerical simulation of the double helix coil phase change thermal storage. Master's Thesis, Tianjin University,China,2017(in Chinese).
孟锋.双螺旋盘管相变蓄热器的实验与数值模拟研究.硕士学位论文,天津大学,2017.
64
Agyenim F, Hewitt N, Eames P, et al. Renewable and Sustainable Energy Reviews,2010,14(2),615.
65
Li X, Yang B, Zhao J, et al. Journal of Mechanical Engineering,2013,49(8),165(in Chinese).
李汛,杨波,赵军,等.机械工程学报,2013,49(8),165.
66
Agyenim F, Eames P, Smyth M. Solar Energy,2009,83(9),1509.
67
Agyenim F, Eames P, Smyth M. Renewable Energy,2011,36(1),108.
68
Ermis K, Erek A, Dincer I. International Journal of Heat and Mass Transfer,2007,50(15?16),3163.
69
Ehms J H N, Oliveski R D C, Rocha L A O, et al. International Journal of Heat and Mass Transfer,2018,119,523.
70
Zhang X L, Chen X D, Han Z, et al. International Journal of Heat and Mass Transfer,2016,92,490.
71
Gunasekara S N, Martin V, Chiu J N. Renewable and Sustainable Energy Reviews,2017,73,558.
72
Gunasekara S N, Stalin J, Mar?al M, et al. Energy Procedia,2017,135,249.
73
Gunasekara S N, Pan R, Chiu J N, et al. Applied Energy,2016,162,1439.
74
Del Barrio E P, Cadoret R, Daranlot J, et al. Solar Energy Materials and Solar Cells,2016,155,454.
75
Diarce G, Quant L, Campos?Celador á, et al. Solar Energy Materials and Solar Cells,2016,157,894.
76
Barrio E P D, Godin A, Duquesne M, et al. Solar Energy Materials and Solar Cells,2017,159,560.
77
Diarce G, Gandarias I, Campos?Celador á, et al. Solar Energy Materials and Solar Cells,2015,134,215.
78
Zeng J L, Chen Y H, Shu L, et al. Solar Energy Materials and Solar Cells,2018,178,84.
79
Gunasekara S N, Chiu N W, Martin V, et al. Solar Energy Materials and Solar Cells,2018,174(2018),248.
80
Zhang Y D, Zhang X L, Ji J. Journal of Molecular Liquids,2019,296,111907.
81
Zhang Y, Sun J H, Ma G X, et al. International Journal of Energy Research,2019,43(3),1121.
82
Zhu C H, Li B G, Yang H F, et al. International Journal of Energy Research,2020,44(3),2061.
83
Lu W, Liu G Z, Xiong Z B, et al. Solar Energy,2020,195,573.
84
Xia L, Zhang P. Solar Energy Materials and Solar Cells,2011,95(8),2246.
85
Liao H J, Ling X. Chemical Engineering & Machinery,2009,36(5),399(in Chinese).
廖海蛟,凌祥.化工机械,2009,36(5),399.
86
Raam Dheep G, Sreekumar A. Journal of Energy Storage,2019,23,98.
87
Mehrpooya M, Ghorbani B, Shahsavari A, et al. Energy Conversion and Management,2020,209,112669.
88
Wang Z S, Li R, Hu J T, et al. Journal of Thermal Science,2020,29(6),486.
89
Liu Y F, Zhang X L, Hua W S, et al. Acta Energiae Solaris Sinica,2017,38(9),2486(in Chinese).
刘宇飞,章学来,华维三,等.太阳能学报,2017,38(9),2486.
90
Song Y Y, Yang Z S, Zhang Q L, et al. Thermal Power Geneation,2020(8),78(in Chinese).
宋颖芸,杨兆晟,张群力,等.热力发电,2020(8),78.
91
El?Sebaii A A, Al?Amir S, Al?Marzouki F M, et al. Energy Conversion and Management,2009,50(12),3104.