Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11179-11187    https://doi.org/10.11896/cldb.20020007
  高分子与聚合物基复合材料 |
赤藓糖醇基复合相变材料的研究进展
马超1, 王静1,*, 冀志江1, 王永超1, 解帅1, 李衎2, 李飞3
1 中国建筑材料科学研究总院有限公司绿色建筑材料国家重点实验室,北京 100024;
2 机关事务管理总局第三保障处,北京 100011;
3 中国人民解放军32378部队,北京 100072
A Review of Erythritol-based Composite Phase Change Materials
MA Chao1, WANG Jing*, JI Zhijiang1, WANG Yongchao1, XIE Shuai1, LI Kan2, LI Fei3
1 State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China;
2 The Third Logistics Department, the Central Military Commission, Beijing 100011, China;
3 Unit No. 32378 of Chinese People’s Liberation Army, Beijing 100072, China;
下载:  全 文 ( PDF ) ( 1917KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相变储热材料通过其相变潜热实现能量的吸收、储存与释放,可以合理有效地利用现有能源、优化使用可再生资源和提高能源利用率。赤藓糖醇的相变温度约118 ℃,潜热约314 J/g,储能密度大、无腐蚀性,在中温储能领域有广阔的应用前景,现已被广泛应用于太阳能蓄热、工业余废热回收、清洁供暖等领域。
然而,赤藓糖醇过冷严重、导热性能相对较差,使得热能无法及时地释放,造成热能利用效率不高,极大地限制了其在储能领域的应用。复合材料制备技术的发展为改善赤藓糖醇的过冷与导热性能提供了一种新的方法,在保留赤藓糖醇优异性能的同时,弥补了它的高过冷和低导热等缺陷。目前,制备赤藓糖醇复合相变材料已成为改善赤藓糖醇性能的主要方法,并取得了显著的成果。
引入成核剂可以降低体系的形核势垒,促进成核,从而抑制过冷。纳米金属及其氧化物、膨胀石墨、石墨泡沫等材料的合理引入明显降低了赤藓糖醇的过冷度,最高可降低93%。将赤藓糖醇长时间控制在过冷的亚稳态,是利用其高过冷特性进行跨季节储能应用的关键,但该技术仍处于研究阶段。通过添加高导热材料来增加赤藓糖醇的当量热导率和增大相变蓄热器换热面积是赤藓糖醇热强化的主要措施,当量热导率可高达30 W/(m·K),且热利用率显著提高。相平衡理论为调节赤藓糖醇的相变温度提供了思路,选择合适的有机相变材料可以制备出相变温度在70~120 ℃范围内可调、潜热大于200 J/g的共晶相变材料。
本文简述了赤藓糖醇基复合相变材料的常用制备技术,分别对改善赤藓糖醇过冷性能和导热性能的手段以及如何利用赤藓糖醇的高过冷进行综述,归纳了调控赤藓糖醇相变温度的方法,分析了赤藓糖醇基复合相变材料在实际应用中的优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马超
王静
冀志江
王永超
解帅
李衎
李飞
关键词:  相变材料  赤藓糖醇  过冷  热导率  相变温度    
Abstract: Phase change heat storage using the latent heat for energy absorption, storage and release, can reasonably and effectively use the existing energy, optimize the use of renewable resources and improve the energy utilization efficiency. Erythritol with a phase transition temperature of about 118 ℃ and a latent heat of about 314 J/g, has the advantages of high energy storage density, non-corrosiveness, etc. It is a promising phase change material in the field of medium temperature energy storage, which is widely used in solar energy storage, industrial waste heat recovery, clean heating and other fields.
However, erythritol has severe supercooling, and its thermal conductivity is relatively lower. These shortcomings make it impossible to release heat energy in time, resulting in low heat energy utilization efficiency, which greatly limits the application of erythritol in energy storage. The deve-loping composite material preparation technology provides a new method for improving the supercooling and thermal conductivity of erythritol. While retaining the excellent properties of erythritol, it also mitigates the defects of severe supercooling and low thermal conductivity. At present, the preparation of erythritol composite phase change materials has become the main method to improve its performance, and achieved remarkable results.
Supercooling is controlled by introducing nucleating agents to reduce the nucleation barrier and promote nucleation. A number of nucleating agents, including nano-metals and their oxides, expanded graphite, graphite foam, etc., have been proven capable of reducing the supercooling of erythritol, in which the best reduction effect, according to the available literature, is 93%. Keeping erythritol in the supercooled metastable state for a long time is the key to utilize its high supercooling characteristics for cross-season energy storage applications. However, the technology is still under research and deserves optimization. Through adding highly thermally conductive materials and increasing the heat transfer area of the phase change regenerator, the equivalent thermal conductivity of erythritol can be increased and can reach up to 30 W/(m·K), resulting in a significant enhancement of heat utilization efficiency. The phase equilibrium theory provides ideas for adjusting the phase transition temperature of erythritol. The eutectic phase change materials with adjustable phase transition temperature in the range of 70—120 ℃ and latent heat greater than 200 J/g can be prepared by selecting appropriate organic phase change materials.
This article briefly summarizes the common preparation techniques of erythritol-based composite phase change materials, and respectively reviews the methods to inhibit the supercooling performance and improve thermal conductivity of erythritol, as well as how to utilize the high supercooling of erythritol. It also summarizes the methods of adjusting the phase transition temperature of erythritol, and comparatively analyzes the advantages of erythritol-based composite phase change materials in practical application.
Key words:  phase change materials    erythritol    supercooling    thermal conductivity    phase transition temperature
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TK02  
基金资助: 国家重点研发计划项目(2016YFC0700903)
通讯作者:  *1341599443@qq.com   
作者简介:  马超,2018年6月毕业于河北大学,获得理学学士学位。现为中国建筑材料科学研究总院硕士研究生,在王静教授的指导下进行研究。目前主要研究领域为相变储能材料。王静,女,硕士,中国建筑材料科学研究总院环境材料科学与工程研究所教授级高工。从事生态环境功能材料及建材的研究与开发工作,承担国家十三五重点研发计划课题1项,承担国家十一五、十二五子课题5项,主持制定完成生态建材国家或行业标准10项;获国家发明专利十余项,发表学术论文超过50篇,参编专业书籍6部。
引用本文:    
马超, 王静, 冀志江, 王永超, 解帅, 李衎, 李飞. 赤藓糖醇基复合相变材料的研究进展[J]. 材料导报, 2021, 35(11): 11179-11187.
MA Chao, WANG Jing, JI Zhijiang, WANG Yongchao, XIE Shuai, LI Kan, LI Fei. A Review of Erythritol-based Composite Phase Change Materials. Materials Reports, 2021, 35(11): 11179-11187.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020007  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11179
1 Du Y P, Ding Y L. Chemical Engineering and Processing: Process Intensification,2016,108,181.
2 Chen Y, Jiang Q H, Xin J W, et al. Journal of Materials Engineering,2019,47(7),1(in Chinese).
陈颖,姜庆辉,辛集武,等.材料工程,2019,47(7),1.
3 Mustaffar A, Harvey A, Reay D. Applied Thermal Engineering,2015,90,1052.
4 Wang B Y, Han Z T, Liu S G. Building Energy and Environment,2019,38(2),46(in Chinese).
王博雅,韩志涛,刘曙光.建筑热能通风空调,2019,38(2),46.
5 Zhang Y L, Song P F, Zhou W, et al. Energy Storage Science and Technology,2017,6(6),1250(in Chinese).
张叶龙,宋鹏飞,周伟,等.储能科学与技术,2017,6(6),1250.
6 Pomianowski M, Heiselberg P, Zhang Y. Energy and Buildings,2013,67(4),56.
7 Guo J W, Jiang Y Q, Wang Y, et al. Energy Conversion and Management,2020,205,112288.
8 Yau Y H, Lee S K. Applied Energy,2010,87(8),2699.
9 Sun Q R, Zhang N, Zhang H Q, et al. Renewable Energy,2020,145,2629.
10 Wang W L, He S Q, Guo S P, et al. Energy Conversion and Management,2014,83,306.
11 Wang Y, Li S, Zhang T, et al. Solar Energy Materials and Solar Cells,2017,171,60.
12 Gao L H, Zhao J, An Q S, et al. Applied Thermal Engineering,2017,113,858.
13 H?hlein S, K?nig?Haagen A, Brüggemann D, et al. Materials,2017,10(4),444.
14 Sari A, Eroglu R, Bicer A, et al. Chemical Engineering and Technology,2011,34(1),87.
15 Karthik M, Faik A, Blanco?Rodríguez P, et al. Carbon, 2015, 94,266.
16 Shukla A, Buddhi D, Sawhney R L. Renewable Energy, 2008, 33(12),2606.
17 Narayanan S S, Kardam A, Kumar V, et al. Resource?efficient Technologies,2017,3(3),272.
18 Nakano K, Masuda Y, Daiguji H. The Journal of Physical Chemistry C,2015,119(9),4769.
19 Fang M T, Zhang X L, Ji J, et al. Energy Storage Science and Technology,2019,8(4),709(in Chinese).
房满庭,章学来,纪珺,等.储能科学与技术,2019,8(4),709.
20 Yuan M D, Ye F, Xu C. Energy Procedia,2019,158,4629.
21 Shen S L, Tan S J, Wu S, et al. Energy Conversion and Management,2018,157,41.
22 Vivekananthan M, Amirtham V A. Thermochimica Acta,2019,676,94.
23 Che H S, Chen Q Q, Zhong Q, et al. Energy Storage Science and Technology,2017,6(4),644(in Chinese).
车海山,陈迁乔,钟秦,等.储能科学与技术,2017,6(4),644.
24 Sheng Q, Xing Y M, Wang Z. Journal of Chemical Industry and Engineering (China),2013,64(10),3565(in Chinese).
盛强,邢玉明,王泽.化工学报,2013,64(10),3565.
25 Shao X F, Feng B, Hu N, et al. Journal of Zhejiang University (Engineering Science),2018,52(1),50(in Chinese).
邵雪峰,冯飙,胡楠,等.浙江大学学报(工学版),2018,52(1),50.
26 Zhang X L, Ding J H, Luo X X, et al. Journal of Refrigeration,2016,37(1),70(in Chinese).
章学来,丁锦宏,罗孝学,等.制冷学报,2016,37(1),70.
27 Deng Y, Li J H, Deng Y X, et al. ACS Sustainable Chemistry and Engineering,2018,6(5),6792.
28 Ona E P, Ozawa S, Kojima Y, et al. Journal of Chemical Engineering of Japan,2003,36(7),799.
29 Ona E P, Zhang X, Ozawa S, et al. Journal of Chemical Engineering of Japan,2002,35(3),290.
30 Herlach D. Journal of Alloys and Compounds,2010,509,S13.
31 He Q B, Tong M W, Liu Y D. Materials Reports,2007,21(5),42(in Chinese).
何钦波,童明伟,刘玉东.材料导报,2007,21(5),42.
32 Jesus A J L, Nunes S C C, Silva M R, et al. International Journal of Pharmaceutics,2010,388(1?2),129.
33 Shao X F, Zhu Z Q, Wu J, et al. Journal of Engineering Thermophysics,2019,40(1),10(in Chinese).
邵雪峰,朱子钦,吴杰,等.工程热物理学报,2019,40(1),10.
34 Zhang X L, Li C L, Chen X D, et al. Journal of Engineering Thermophysics,2014,35(12),2334(in Chinese).
章学来,李春蕾,陈旭东,等.工程热物理学报,2014,35(12),2334.
35 Zhang X L, Zhou P F, Xu W W, et al. Journal of Refrigeration,2017,38(3),108(in Chinese).
章学来,周鹏飞,徐蔚雯,等.制冷学报,2017,38(3),108.
36 Wang W, Zhang X L, Han Z, et al. Chemical Engineering (China),2012,40(10),21(in Chinese).
王为,章学来,韩中,等.化学工程,2012,40(10),21.
37 Yuan M D, Ren Y X, Xu C, et al. Renewable Energy,2019,136,211.
38 Xun J H. Experimental study on preparation and the thermal storage performances of erythritol composite phase change material. Master's Thesis, Dalian University of Technology, China,2018(in Chinese).
徐家慧.赤藻糖醇复合相变材料的制备及其储热性能研究.硕士学位论文,大连理工大学,2018.
39 Zhang H, Duquesne M, Godin A, et al. Fluid Phase Equilibria,2017,436,55.
40 Sepp?l? A, Meril?inen A, Wikstr?m L, et al. Experimental Thermal and Fluid Science,2010,34(5),523.
41 Zhang H C, van Wissen R M J, Nedea S V, et al. In: Eurotherm Seminar #99 Advances in Thermal Energy Storage. Elsevier, Cambridge,2014.
42 Puupponen S, Mikkola V, Ala?Nissila T, et al. Applied Energy,2016,172,96.
43 Feng B, Shao X F, Zhu Z Q,et al. Journal of Chemical Industry and Engineering (China),2018,69(6),2388(in Chinese).
冯飙,邵雪峰,朱子钦,等.化工学报,2018,69(6),2388.
44 Inagaki T, Ishida T. The Journal of Physical Chemistry C,2016,120(15),7903.
45 Feng B, Fan L W, Zeng Y, et al. International Journal of Thermal Sciences,2019,146,106103.
46 Horrocks J K, Mclaughlin E. Transactions of the Faraday Society,1960,56(197),206.
47 Zhang P, Xiao X, Ma Z W. Applied Energy,2016,165,472.
48 Du B X, Kong X X, Xiao M, et al. Transactions of China Electrotechnical Society,2018,33(14),3149(in Chinese).
杜伯学,孔晓晓,肖萌,等.电工技术学报,2018,33(14),3149.
49 Halté V, Bigot J Y, Palpant B, et al. Applied Physics Letters,1999,75(24),3799.
50 Ding Q, Fang X, Fan L W, et al. Energy Storage Science and Technology,2014,3(3),250(in Chinese).
丁晴,方昕,范利武,等.储能科学与技术,2014,3(3),250.
51 Kibria M A, Anisur M R, Mahfuz M H, et al. Energy Conversion and Management,2015,95,69.
52 Xu Z, Hou J, Wan S Q, et al. Energy Storage Science and Technology,2020,9(1),109(in Chinese).
徐众,侯静,万书权,等.储能科学与技术,2020,9(1),109.
53 Luo Z C, Zhang Q, Wu G H. International Journal of Heat and Mass Transfer,2015,80,653.
54 Oya T, Nomura T, Okinaka N, et al. Applied Thermal Engineering,2012,40,373.
55 Shin H K, Rhee K Y, Park S J. Composites Part B, Engineering,2016,96,350.
56 Lee S Y, Shin H K, Park M, et al. Carbon,2014,68,67.
57 Zhang Q, Luo Z, Guo Q, et al. Energy conversion and management,2017,136,220.
58 Oya T, Nomura T, Tsubota M, et al. Applied Thermal Engineering,2013,61(2),828.
59 Sheng N, Dong K, Zhu C, et al. Materials Chemistry and Physics,2019,229,87.
60 Nomura T, Tsubota M, Oya T, et al. Applied Thermal Engineering,2013,61(2),28.
61 Kaizawa A, Maruoka N, Kawai A, et al. Heat and Mass Transfer,2008,44(7),763.
62 Wang W, He S, Guo S, et al. Energy Conversion and Management,2014,83,306.
63 Meng F. Experimental study and numerical simulation of the double helix coil phase change thermal storage. Master's Thesis, Tianjin University,China,2017(in Chinese).
孟锋.双螺旋盘管相变蓄热器的实验与数值模拟研究.硕士学位论文,天津大学,2017.
64 Agyenim F, Hewitt N, Eames P, et al. Renewable and Sustainable Energy Reviews,2010,14(2),615.
65 Li X, Yang B, Zhao J, et al. Journal of Mechanical Engineering,2013,49(8),165(in Chinese).
李汛,杨波,赵军,等.机械工程学报,2013,49(8),165.
66 Agyenim F, Eames P, Smyth M. Solar Energy,2009,83(9),1509.
67 Agyenim F, Eames P, Smyth M. Renewable Energy,2011,36(1),108.
68 Ermis K, Erek A, Dincer I. International Journal of Heat and Mass Transfer,2007,50(15?16),3163.
69 Ehms J H N, Oliveski R D C, Rocha L A O, et al. International Journal of Heat and Mass Transfer,2018,119,523.
70 Zhang X L, Chen X D, Han Z, et al. International Journal of Heat and Mass Transfer,2016,92,490.
71 Gunasekara S N, Martin V, Chiu J N. Renewable and Sustainable Energy Reviews,2017,73,558.
72 Gunasekara S N, Stalin J, Mar?al M, et al. Energy Procedia,2017,135,249.
73 Gunasekara S N, Pan R, Chiu J N, et al. Applied Energy,2016,162,1439.
74 Del Barrio E P, Cadoret R, Daranlot J, et al. Solar Energy Materials and Solar Cells,2016,155,454.
75 Diarce G, Quant L, Campos?Celador á, et al. Solar Energy Materials and Solar Cells,2016,157,894.
76 Barrio E P D, Godin A, Duquesne M, et al. Solar Energy Materials and Solar Cells,2017,159,560.
77 Diarce G, Gandarias I, Campos?Celador á, et al. Solar Energy Materials and Solar Cells,2015,134,215.
78 Zeng J L, Chen Y H, Shu L, et al. Solar Energy Materials and Solar Cells,2018,178,84.
79 Gunasekara S N, Chiu N W, Martin V, et al. Solar Energy Materials and Solar Cells,2018,174(2018),248.
80 Zhang Y D, Zhang X L, Ji J. Journal of Molecular Liquids,2019,296,111907.
81 Zhang Y, Sun J H, Ma G X, et al. International Journal of Energy Research,2019,43(3),1121.
82 Zhu C H, Li B G, Yang H F, et al. International Journal of Energy Research,2020,44(3),2061.
83 Lu W, Liu G Z, Xiong Z B, et al. Solar Energy,2020,195,573.
84 Xia L, Zhang P. Solar Energy Materials and Solar Cells,2011,95(8),2246.
85 Liao H J, Ling X. Chemical Engineering & Machinery,2009,36(5),399(in Chinese).
廖海蛟,凌祥.化工机械,2009,36(5),399.
86 Raam Dheep G, Sreekumar A. Journal of Energy Storage,2019,23,98.
87 Mehrpooya M, Ghorbani B, Shahsavari A, et al. Energy Conversion and Management,2020,209,112669.
88 Wang Z S, Li R, Hu J T, et al. Journal of Thermal Science,2020,29(6),486.
89 Liu Y F, Zhang X L, Hua W S, et al. Acta Energiae Solaris Sinica,2017,38(9),2486(in Chinese).
刘宇飞,章学来,华维三,等.太阳能学报,2017,38(9),2486.
90 Song Y Y, Yang Z S, Zhang Q L, et al. Thermal Power Geneation,2020(8),78(in Chinese).
宋颖芸,杨兆晟,张群力,等.热力发电,2020(8),78.
91 El?Sebaii A A, Al?Amir S, Al?Marzouki F M, et al. Energy Conversion and Management,2009,50(12),3104.
[1] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[2] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[3] 朱邱豪, 王金金, 董建峰. 高效光学可调谐介质超表面研究进展[J]. 材料导报, 2021, 35(7): 7063-7070.
[4] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[5] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[6] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[7] 张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显. 正交各向异性结构的三维无网格法稳态传热模型及应用[J]. 材料导报, 2020, 34(8): 8036-8041.
[8] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[9] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[10] 王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
[11] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[12] 廖圣俊, 周立娟, 尹凯俐, 王建军, 姜常玺. 高导热氮化硅陶瓷基板研究现状[J]. 材料导报, 2020, 34(21): 21105-21114.
[13] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[14] 朱思贤, 邹得球, 鲍家明, 贺瑞军, 吴锦飞, 张国彤. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082.
[15] 王佩祥, 冯秀娟, 朱易春, 蒋达华. 利用膨胀石墨改进十二水磷酸氢二钠复合相变材料的蓄热性能[J]. 材料导报, 2020, 34(18): 18044-18048.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed