Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7063-7070    https://doi.org/10.11896/cldb.19120069
  无机非金属及其复合材料 |
高效光学可调谐介质超表面研究进展
朱邱豪, 王金金, 董建峰
宁波大学信息科学与工程学院,宁波 315211
Research Progress on Optically High-efficient Tunable Dielectric Metasurfaces
ZHU Qiuhao, WANG Jinjin, DONG Jianfeng
Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
下载:  全 文 ( PDF ) ( 4584KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自超表面(超薄亚波长厚度超材料)被提出之后,其基础材料经历了从金属、混合介质再到全介质材料的更迭。传统超表面功能单一,在实际应用中存在局限性,因此,研究者们把目标放在了动态可调谐的超表面上。本文介绍了具有高效光传输特性的混合介质和全介质的可调谐超表面的一些理论基础,并对近期的研究进展进行了综述,全介质型可调谐超表面又分为材料调谐和物理调谐两部分。在红外和太赫兹波段,主要介绍了锗-锑-碲化合物(Ge2Sb2Te5,GST)、VO2、石墨烯、液晶、砷化镓等一些常用材料的可调谐超表面的研究进展,最后,给出了对可调谐超表面未来发展的一些个人看法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱邱豪
王金金
董建峰
关键词:  超表面  全介质  可调谐  Mie共振  相变材料    
Abstract: Since the metasurface (ultra-thin sub-wavelength metamaterial) was proposed, its basic materials have undergone changes from metal, mixed media to all-dielectric materials. At present, the traditional metasurface has a single function, which has limitations in practical applications. As a result, Researchers focused on dynamically tunable metasurface. This review introduces some theoretical foundations of mixed media and all-medium tunable metasurfaces with high-efficiency optical transmission characteristics, and summarizes reviews recent research progress. All-dielectric tunable metasurfaces are divided into material tuning and physical tuning. In the infrared and terahertz bands, the research progress of tunable metasurfaces for some commonly used materials such as GST, VO2, graphene, liquid crystal, and gallium arsenide is mainly introduced. Finally, we give some personal views on the future of tunable metasurfaces development.
Key words:  metasurfaces    all-dielectric    tunable    Mie-resonant    phase change material
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TB34  
基金资助: 国家自然科学基金(61475079)
作者简介:  朱邱豪,2018年6月毕业于宁波大学,获得工学学士学位。现为宁波大学信息科学与工程学院硕士研究生,在董建峰教授的指导下主要研究可调谐全介质超表面的光传输特性。
董建峰,宁波大学信息科学与工程学院教授、博士研究生导师。1986年南开大学物理系光学专业本科毕业,1989年中国科学院物理研究所固体物理专业硕士毕业后到宁波大学工作至今,2005年中国科学技术大学电磁场与微波技术专业博士毕业。2006年12月至2007年12月在美国能源部Ames国家实验室访学一年。目前主要从事超材料、手征介质波导等方面的研究工作。发表论文100余篇,包括Optics Express,Physical Review B,Progress in Electromagnetics Research (PIER)等。
引用本文:    
朱邱豪, 王金金, 董建峰. 高效光学可调谐介质超表面研究进展[J]. 材料导报, 2021, 35(7): 7063-7070.
ZHU Qiuhao, WANG Jinjin, DONG Jianfeng. Research Progress on Optically High-efficient Tunable Dielectric Metasurfaces. Materials Reports, 2021, 35(7): 7063-7070.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120069  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7063
1 Genevet P, Capasso F, Aieta F, et al. Optica, 2017, 4(1), 139.
2 Chen M, Kim M, Wong Alex M H, et al. Nanophotonics, 2018, 7(6), 1207.
3 Sun S L, He Q, Hao J, et al. Advances in Optics and Photonics, 2019, 11(2), 380.
4 He Q, Sun S L, Xiao S Y, et al. Advanced Optical Materials, 2018, 6(19), 1800415.
5 Liu X, Wang Q, Zhang X, et al. Advanced Optical Materials, 2019, 7(12), 1900175.
6 Lin Z M, Huang L L, ZhaoR Z, et al. Optics Express, 2019, 27(13), 18740.
7 Shi C, Luxmoore I J, Nash G R. Optics Express, 2019, 27(10), 14577.
8 Yao Z F, Wei T T, Wang Y K, et al. Applied Optics, 2019, 58(13), 3570.
9 Tian J Y, Li Q, Lu J, et al. Optics Express, 2018, 26(18), 23918.
10 Ding X Y, Yang X, Wang J J, et al. Superlattices and Microstructures, 2019, 132, 106169.
11 Yilmaz N, Ozer A, Ozdemir A, et al. Journal of Optics, 2019, 21(4), 045105.
12 Yilmaz N, Ozer A, Ozdemir A, et al. Journal of Physics D: Applied Physics, 2019, 52(20), 205102.
13 Komar A, Fang Z, Bohn J, et al. Applied Physics Letters, 2017, 110, 071109.
14 Yang Y, Miroshnichenko A E, Kostinski S V, et al. Physical Review B, 2017, 95(16), 165426.
15 Zhao Q, Zhou J, Zhang F, et al. Materials Today, 2009, 12(12), 60.
16 Aoni R A, Rahmani M, Xu L, et al. Scientific Reports, 2019, 9, 6510.
17 Bakhtawar, Haneef M, Bacha B A, et al. Chinese Physics B, 2018, 27(11), 526.
18 Pan W K, Cai T, Tang S, et al. Optics Express, 2018, 26(13), 17447.
19 Zhou X, Li M H, Wang H B, et al. Journal of Electromagnetic Waves & Applications, 2017, 31(8),828.
20 Chu C H, Tseng M L, Chen J, et al. Laser & Photonics Reviews, 2016, 10(6), 986.
21 Dong W, Qiu Y M, Zhou X L, et al. Advanced Optical Materials, 2018, 6(14), 1701346.
22 Zheng G, Mühlenbernd H, Kenney M, et al. Nature Nanotechnology, 2015, 10(4), 308.
23 Nemati A, Qian W, Hong M H, et al. Journal of Optics, 2019, 21(5), 055102.
24 Zhou Y, Kravchenko I I, Wang H, et al. Nano Letters, 2018, 18 (12), 7529.
25 Li S Y, Zhou C B, Ban G X, et al. Journal of Physics D: Applied Phy-sics, 2019, 52(9), 095106.
26 Liu H, Yang H, Li Y R, et al. Advanced Optical Materials, 2019, 7(8), 1801639.
27 Arbabi A, Horie Y, Bagheri M, et al. Nature Nanotechnology, 2015, 10(11), 937.
28 Yu N, Genevet P, Kats M A, et al. Science, 2011, 334(6054), 333.
29 Zhao W, Jiang H, Liu B, et al. Scientific Reports, 2016, 6, 30613.
30 Arbabi E, Arbabi A, Kamali S M, et al. Optics Express, 2016, 24(16), 18468.
31 Kruk S, Hopkins B, Kravchenko I I, et al. APL Photonics, 2016, 1(3), 030801.
32 Khorasaninejad M, Chen W T, Devlin R C, et al. Science, 2016, 352(6290), 1190.
33 Karvounis A, Gholipour B, Macdonald K F, et al. Applied Physics Letters, 2016, 109, 051103.
34 Pogrebnyakov A V, Bossard J A, Turpin J P, et al. Optical Materials Express, 2018, 8(8), 2264.
35 Luan J, Yang S K, Liu D M, et al. Optics Express, 2020, 28(3), 3732.
36 Pan W K, Kang Y Y, Wang C, et al. Optics Communications, 2018, 407, 83.
37 Wang Q, Rogers Edward T F, Gholipour B, et al. Nature Photonics, 2016, 10, 60.
38 Sun M Y, Xu X W, Sun X W, et al. Scientific Reports, 2019, 9, 8673.
39 Shcherbakov M R, Liu S, Zubyuk V V, et al. Nature Communications, 2017, 8(1), 17.
40 Liu S, Sinclair M B, Saravi S, et al. Nano Letters, 2016, 16(9), 5426.
41 Li S Q, Xu X, Veetil R M, et al. Science, 2019, 364(6445), 1087.
42 Zou C J, Komar A, Fasold S, et al. ACS Photonics, 2019, 6(6), 1533.
43 Ee H S, Agarwal R. Nano Letters, 2016, 16(4), 2818.
44 Salary M M, Farazi S, Mosallaei H. Advanced Optical Materials, 2019, 7(23), 1900843.
45 Shanei M M, Fathi D, Ghasemifard F, et al. Scientific Reports, 2019, 9, 13641.
46 Guo J Y, Wang T, Zhao H, et al. Advanced Optical Materials, 2019, 7(10), 1801696.
47 Chang S Y, Guo X X, Ni X J. Annual Review of Materials Research, 2018, 48(1), 279.
[1] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[2] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[3] 方全海, 吴良沛, 董建峰. 多功能超表面的光传输特性研究进展[J]. 材料导报, 2020, 34(9): 9048-9054.
[4] 王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
[5] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[6] 朱思贤, 邹得球, 鲍家明, 贺瑞军, 吴锦飞, 张国彤. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082.
[7] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[8] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[9] 王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[10] 张正飞, 秦紫依, 李勇, 王毅. 相变材料的过冷现象及其抑制方法的研究进展[J]. 材料导报, 2019, 33(21): 3613-3619.
[11] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[12] 潘威康, 汤登飞, 董建峰. 超表面在红外波段的光传输特性: 偏振控制、旋光性和不对称传输[J]. 《材料导报》期刊社, 2018, 32(5): 735-741.
[13] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[14] 李云涛, 晏华, 余荣升, 王群. 基于功效系数法的复合相变材料综合性能评价研究*[J]. CLDB, 2017, 31(8): 135-139.
[15] 李云涛, 晏华, 汪宏涛, 王群, 赵思勰. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(4): 94-99.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed