Present Research Situation of Internal Morphology Controlling of Specimens Fabricated by Selective Laser Melting Based on Printing Parameters: a Review
YUAN Xinyi, LIU Yang, LI Mingxuan, LU Xiaofeng, ZHU Xiaolei*
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
Abstract: In recent years, selective laser melting (SLM) technology has been used to solve issues surrounding the rapid manufacturing of complex structures and high-performance metal components. Due to this, it has become a very current and hot research topic for scholars. However, when SLM printing, a high temperature gradient and multi-scale, multi-factor, multi-form thermophysical coupling interaction occurs in the molten pool, and as a result, defects inevitably form inside the printed components. Thus, finding a way to fabricate components with high relative density and good comprehensive mechanical properties is one of the issues being researched currently. It is clear that the selection of printing parameters directly determines the printing quality of the component. Most of the printing parameter optimisation methods are based on experimental methods, but nowadays, as material is frequently changed, the corresponding experiments need to be repeated each time the type of material is changed. Currently, there is a lack of theory-based printing process control methods. The inside of the SLM component is stacked with a large number of molten pools, and the morphology and properties of these molten pools directly affect the final printing effect. For this reason, scholars have begun to focus their research on molten pools. Compared with the experimental method, the optimisation method, which has the molten pool as its research object, has a certain universality and greatly reduces the cost and time required for the experiment. However, this method still has obstacles to overcome, such as the difficulty in characterising the morphology of the molten pool, andthe unclear mechanism between printing parameters and this morphology. Thus, it still requires a lot of exploration. This article analyses domestic and foreign research papers related to the molten pool of selective laser melting, and introduces the internal defects and topography of the printing components, and the influence of printing parameters and their optimisation methods. This article also explains the importance of the molten pool and SLM printing parameters to control the internal morphology of those specimens fabricated by SLM. This paper sorts out the problems that still need to be further explored in this field. It can work as a reference and aid the further development and application of the selected laser melting technology.
袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊. 基于打印参数的选区激光熔化构件内部形貌调控研究现状[J]. 材料导报, 2022, 36(21): 20080263-9.
YUAN Xinyi, LIU Yang, LI Mingxuan, LU Xiaofeng, ZHU Xiaolei. Present Research Situation of Internal Morphology Controlling of Specimens Fabricated by Selective Laser Melting Based on Printing Parameters: a Review. Materials Reports, 2022, 36(21): 20080263-9.
1 Martin J H, Yahata B D, Hundley J M, et al. Nature, 2017, 549, 7672. 2 Tobias M, Martin L, Lozanovski B, et al. Materials & Design, 2019, 183, 108137. 3 Mohsin T M. Materials Today: Proceedings, 2018, 5(9), 17906. 4 Tolosa I, Garciandía F, Zubiri F, et al. International Journal of Advanced Manufacturing Technology, 2010, 51, 639. 5 Yuan P, Gu D. Journal of Physics D: Applied Physics, 2015, 48(3), 16. 6 Li C J, Tsai T W, Tseng C C. Physics Procedia, 2016, 83, 1444. 7 Li B Q. Selective laser melting of AlSi10Mg: simulation and experiments. Master's Thesis, North University of China, China, 2019 (in Chinese). 李保强. 选区激光熔化AlSi10Mg成形过程数值模拟与实验研究. 硕士学位论文, 中北大学, 2019. 8 Tan P F, Kiran R, Zhou K. Journal of Manufacturing Processes, 2021, 64, 816. 9 Nesma T A, Nicola M E, Ian A, et al. Additive Manufacturing, 2014, 1-4, 77. 10 Tang X, Zhang S, Zhang C H,et al. Materials Characterization, 2020, 170, 110718. 11 Li R D. Research on the key basic issues in selective laser melting of me-tallic powder. Ph.D. Thesis, Huazhong University of Science & Techno-logy, China, 2010 (in Chinese). 李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究. 博士学位论文, 华中科技大学,2010. 12 Pal S, Lojen G, Hudak R, et al. Additive Manufacturing, 2020, 33, 101147. 13 Gu D D. Direct laser sintering of Cu-based metal powder: key processes and basic Mechanisms. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2007 (in Chinese). 顾冬冬. 激光烧结铜基合金的关键工艺及基础研究. 博士学位论文, 南京航天航空大学, 2007. 14 Mushtaq K, Phill D. Rapid Prototyping Journal, 2012, 18(1), 81. 15 Eleftherios L, Peter F, Christopher J S. Journal of Materials Processing Technology, 2010, 211(2), 275. 16 Yadroitsev I S, Gusarov A. Journal of Materials Processing Technology, 2010, 210(12), 1624. 17 Cunningham R W, Zhao C, Parab N, et al. Science, 2019, 363(6429), 849. 18 Xiao R, Yang W, Chen K. Applied Laser, 2007, 27, 13. 19 Kan X F, Yin Y J, Yang D C, et al. Optics & Laser Technology, 2021, 142, 107136. 20 Petri L, Tuomas R, Anssi L, et al. Physics Procedia, 2016, 83, 26. 21 Monroy K, Delgado J, Ciurana J. Procedia Engineering, 2013, 63, 361. 22 Gong H J, Khalid R, Gu H F, et al. Additive Manufacturing, 2014, 1(4), 87. 23 Zhao C, Fezzaa K, Cunningham R W, et al. Scientific Reports, 2017, 7(1), 3602. 24 Guo M, Gu D, Xi L, et al. International Journal of Refractory Metals and Hard Materials, 2019, 79, 37. 25 Rai R, Elmer J W, Palmer T A, et al. Journal of Physics D: Applied Physics, 2007, 40(18), 5753. 26 Yang J J. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting. Ph.D. Thesis, Huazhong University of Science & Technology, China, 2017 (in Chinese). 杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控. 博士学位论文, 华中科技大学, 2017. 27 Guraya T, Singamneni S, Chen Z W. Journal of Alloy and Compounds, 2019, 792, 151. 28 Zhang Y. The simulation research on the keyhole effect of deep penetration laser welding based on a novel “Sandwich” method. Ph.D. Thesis, Hunan University, China, 2005 (in Chinese). 张屹. 基于“三明治”新方法的激光深熔焊接小孔效应的模拟研究. 博士学位论文, 湖南大学, 2005. 29 Liao S H. Numerical simulation and experiment study of the nail-head weld shape with high power laser welding. Master's Thesis, Hunan University, China, 2014 (in Chinese). 廖生慧. 高功率激光焊接钉子头焊缝的数值模拟与试验研究. 硕士学位论文, 湖南大学, 2014. 30 Chen Q, Gildas G, Gandin C A, et al. Additive Manufacturing, 2018, 21,713. 31 Le T N, Lo Y L. Materials & Design, 2019, 179, 107866. 32 Cassiopée G, Emilie L G, Eric L, et al. Additive Manufacturing, 2018, 22, 165. 33 Yin Y J. Study of flow law, microstructure and mechanical properties of 316L stainless steel by selective laser melting. Ph.D. Thesis, University of Science and Technology Beijing, China, 2019 (in Chinese). 尹衍军. 选区激光熔化成形316L不锈钢流动规律及组织、性能研究. 博士学位论文, 北京科技大学, 2019. 34 Sun X K. Study on melt pool morphology and porosity defect of GH4169 alloy fabricated by selective laser melting. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese). 孙雄凯. GH4169合金选区激光熔化熔池形态及气孔缺陷研究. 硕士学位论文, 哈尔滨工业大学, 2018. 35 Liu Z, Zhang D Y, Feng Z, et al. Applied Laser, 2017(2), 7 (in Chinese). 刘臻, 张冬云, 冯喆,等.应用激光, 2017(2), 7. 36 Khorasani A M, Gibson I, Godarzvand C N, et al. Measurement, 2016, 92, 534. 37 Wu W H, Yang Y Q, Mao G S. Manufacturing Technology & Machine Tool, 2014(4), 46 (in Chinese). 吴伟辉, 杨永强, 毛桂生.制造技术与机床, 2014(4), 46. 38 Zhou X. Research on micro-scale melt characteristics and solidified microstructures in selective laser melting. Ph.D. Thesis, Tsinghua University, China, 2016 (in Chinese). 周鑫. 激光选区熔化微尺度熔池特性与凝固微观组织. 博士学位论文, 清华大学, 2016. 39 Srinivasa R C, Raja A, Priyanka N, et al. Materials Science & Enginee-ring A, 2019, 750, 141. 40 Hann D B, Iammi J, Folkes J. Journal of Physics D: Applied Physics. 2011, 44, 445401. 41 Igor P, Vadim S, Artem K, et al. Intermetallics, 2019, 112, 10655. 42 Sun J, Zhu X G, Li P, et al. Materials for Mechanical Engineering, 2020, 44(1), 51 (in Chinese). 孙靖, 朱小刚, 李鹏,等.机械工程材料, 2020, 44(1), 51. 43 Attar H, Calin M, Zhang L C, et al. Materials Science and Engineering A, 2014, 59, 170. 44 Scipioni B U, Wolfer A J, Matthews M J, et al. Materials & Design, 2017, 113, 331. 45 Asuka S, Ryoya N, Naoki T, et al. Additive Manufacturing, 2019, 28, 160. 46 Emrecan S. Additive Manufacturing, 2020, 31, 100984. 47 King W E, Barth H D, Castillo V M, et al. Journal of Materials Proce-ssing Technology, 2014, 214(12), 2915. 48 Zakrzewski T, Kozak J, Witt M et al. Procedia CIRP, 2020, 95 115. 49 Umberto S B, Alexander J W, Manyalibo J M, et al. Materials & Design, 2017, 113, 331. 50 Wu H, Ren J Y, Huang Q L, et al. Journal of Micromechanics and Molecular Physics, 2017, 2(4), 1750017. 51 Li J C, Hu J X, Cao L C, et al. Journal of Manufacturing Processes, 2021, 68, 198 52 Imade K, Etienne P, Patrice P, et al. Journal of Materials Processing Technology, 2018, 255, 536. 53 Duan W, Zhao Z, Ji H W, et al.Materials Reports B:Research Papers, 2019, 33(5), 94 (in Chinese). 段伟, 赵哲, 吉红伟, 等.材料导报:研究篇, 2019, 33(5), 94. 54 Zhou Y T, Wei Z Y, Du J, et al. Applied Laser, 2016, 36(6), 656. 邹亚桐, 魏正英, 杜军,等.应用激光, 2016, 36(6), 656. 55 Li J F, Wei Z Y. Materials Science and Engineering, 2017, 269(1), 21. 56 Yang T Y. Study on performance prediction and acoustic signal of laser selective melting molding parts. Master's Thesis, Lanzhou University of Technology, China, 2019 (in Chinese). 杨天雨. 激光选区熔化成型件性能预测及声信号检测研究. 硕士学位论文, 兰州理工大学, 2019. 20080263-857 Xia T, Guo J B, Zhao Y H. Hot Working Technology, 2021, 50(4), 29 (in Chinese). 夏田, 郭建斌, 赵一号.热加工工艺, 2021, 50(4), 29. 58 Liu S, Zhu H, Peng G, et al. Materials & Design, 2018, 142, 319. 59 Verhaeghe F, Craeghs T, Heulens J, et al. Acta Materialia, 2009, 57(20), 6006. 60 Weingarten C, Buchbinder D, Pirch N, et al. Journal of Materials Processing Technology, 2015, 221, 112. 61 Mondal S, Paul C P, Kukreja L M, et al. International Journal of Advanced Manufacturing Technology, 2013, 66(1-4), 91. 62 Ökten Korhan, Biyikoɡˇlu Atilla. Optics & Laser Technology, 2021, 137, 106825. 63 Zhuang J R, Lee Y T, Hsieh W H, et al. Optics & Laser Technology, 2018, 103, 59. 64 Loh L E, Chua C K, Yeong W Y, et al. International Journal of Heat and Mass Transfer, 2015, 80, 288. 65 Lei L P, Murakawa H, Shi Y W, et al. Computational Materials Science, 2011, 21, 276. 66 Bauereiß A, Scharowsky T, Körner C. Journal of Materials Processing Technology, 2014, 214(11), 2522. 67 Yu G Q. Mesoscopic simulation and experimental study on selective laser melting of aluminum alloy. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2017 (in Chinese). 余冠群. 铝合金粉末选区激光熔化过程的介观模拟与实验研究. 硕士学位论文, 南京航空航天大学, 2017. 68 Xu L,Du Y B,Zhang L. Journal of Chongqing Technology and Business University(Natural Science Edition), 2021,38(1),1(in Chinese). 许磊,杜彦斌,张磊. 重庆工商大学学报(自然科学版),2021,38(1),1. 69 Gürtler F J, Karg M, Leitz K H, et al. Physics Procedia, 2013, 41, 874. 70 Carolin K, Andreas B, Elham A. Modelling & Simulation in Materials Science & Engineering, 2013, 21(8), 5011. 71 Yin H, Felicelli S D. Acta Materialia, 2009, 58(4), 1455. 72 Zheng M, Wei L, Chen J, et al. International Journal of Heat and Mass Transfer, 2019, 140, 1091. 73 Yang K V, Rometsch P, Jarvis T, et al. Materials Science and Enginee-ring: A, 2017, 712, 166. 74 Pang H. Study on laser melting process and properties of Mo and Mo-5Co alloys. Master's Thesis, Harbin Engineering University, China, 2019 (in Chinese). 庞红. Mo、Mo-5Co合金选区激光熔化成形工艺及性能研究. 硕士学位论文, 哈尔滨工程大学, 2019. 75 Seede R, Shoukr D, Zhang B, et al. Acta Materialia, 2020, 186, 199. 76 Su X, Yang Y. Journal of Materials Processing Technology, 2012, 212(10), 2074.