Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20080263-9    https://doi.org/10.11896/cldb.20080263
  金属与金属基复合材料 |
基于打印参数的选区激光熔化构件内部形貌调控研究现状
袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊*
南京工业大学机械与动力工程学院,南京 211816
Present Research Situation of Internal Morphology Controlling of Specimens Fabricated by Selective Laser Melting Based on Printing Parameters: a Review
YUAN Xinyi, LIU Yang, LI Mingxuan, LU Xiaofeng, ZHU Xiaolei*
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
下载:  全 文 ( PDF ) ( 4164KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,由于选区激光熔化(Selective laser melting,SLM)技术解决了兼顾复杂结构和高性能金属构件快速制造的技术难题,其成为了学者们研究的热点。然而,SLM打印过程中具有温度梯度高且存在多尺度、多因素与多形式热物理间耦合交互作用等特点,构件内部不可避免地会产生缺陷。如何制备出致密度高、综合力学性能好的打印构件是目前SLM技术亟需解决的问题之一。打印参数的选取直接决定了构件的打印质量。大部分的打印参数优化方法都以试验法为主,但是如今材料更新换代速度快,面对不同的材料种类,需要重复进行相应的试验。目前,缺少基于理论基础的打印工艺调控方法。SLM构件内部是由大量熔池堆叠而成,熔池的形貌与性能直接影响构件最终的打印效果。因此,学者们开始将研究目光放在熔池上。相比于试验法,以熔池为研究对象的优化方法具有一定的普适性并且试验所需的成本与时间也大幅减少。但是该方法还面临着熔池形貌表征困难和打印参数对熔池形貌的影响机理不清晰等问题,因此还需要进行进一步探索。
本文详细地梳理了SLM打印参数调控方法相关的国内外文献,对打印构件内部缺陷、熔池形貌和打印参数对构件成型的影响等方面的研究现状及动态进行了介绍。本文阐述了SLM打印参数和构件内部熔池在构件内部形貌调控的重要性,梳理了该领域中目前还待进一步探索的问题,为选区激光熔化技术的深入发展和应用提供参考与帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁信翊
刘杨
李明轩
陆晓峰
朱晓磊
关键词:  选区激光熔化  熔池  打印参数  有限元  致密度    
Abstract: In recent years, selective laser melting (SLM) technology has been used to solve issues surrounding the rapid manufacturing of complex structures and high-performance metal components. Due to this, it has become a very current and hot research topic for scholars. However, when SLM printing, a high temperature gradient and multi-scale, multi-factor, multi-form thermophysical coupling interaction occurs in the molten pool, and as a result, defects inevitably form inside the printed components. Thus, finding a way to fabricate components with high relative density and good comprehensive mechanical properties is one of the issues being researched currently. It is clear that the selection of printing parameters directly determines the printing quality of the component. Most of the printing parameter optimisation methods are based on experimental methods, but nowadays, as material is frequently changed, the corresponding experiments need to be repeated each time the type of material is changed. Currently, there is a lack of theory-based printing process control methods. The inside of the SLM component is stacked with a large number of molten pools, and the morphology and properties of these molten pools directly affect the final printing effect. For this reason, scholars have begun to focus their research on molten pools. Compared with the experimental method, the optimisation method, which has the molten pool as its research object, has a certain universality and greatly reduces the cost and time required for the experiment. However, this method still has obstacles to overcome, such as the difficulty in characterising the morphology of the molten pool, andthe unclear mechanism between printing parameters and this morphology. Thus, it still requires a lot of exploration.
This article analyses domestic and foreign research papers related to the molten pool of selective laser melting, and introduces the internal defects and topography of the printing components, and the influence of printing parameters and their optimisation methods. This article also explains the importance of the molten pool and SLM printing parameters to control the internal morphology of those specimens fabricated by SLM. This paper sorts out the problems that still need to be further explored in this field. It can work as a reference and aid the further development and application of the selected laser melting technology.
Key words:  SLM    molten pool    printing parameter    finite element method    relative density
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TG665  
基金资助: 国家自然科学基金(11772147)
通讯作者:  * zhuxiaolei856028@126.com   
作者简介:  袁信翊,2018年6月毕业于南京工业大学,获得工学学士学位。现为南京工业大学机械与动力工程学院硕士研究生。目前主要研究领域为铝合金增材制造。
朱晓磊,南京工业大学教授、硕士研究生导师,江苏省力学学会青年工作委员会秘书长,机械工程学会压力容器分委会委员。2007年7月本科毕业于吉林化工学院,2012年11月在南京工业大学获得工学博士学位,2013年4月—2015年4月在清华大学航天航空学院固体力学所从事博士后研究。长期从事结构与功能一体化新材料的设计、制备工艺以及制造装备等方面的研究。主持国家自然科学基金重大仪器专项课题(1项)、军委科技委基础加强项目子课题(2项)、江苏省高校自然科学基金重大项目(1项)、江苏省“六大人才高峰”项目、江苏省自然科学基金面上项目等;已发表60多篇学术论文,其中SCI论文38篇,授权发明专利8项。
引用本文:    
袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊. 基于打印参数的选区激光熔化构件内部形貌调控研究现状[J]. 材料导报, 2022, 36(21): 20080263-9.
YUAN Xinyi, LIU Yang, LI Mingxuan, LU Xiaofeng, ZHU Xiaolei. Present Research Situation of Internal Morphology Controlling of Specimens Fabricated by Selective Laser Melting Based on Printing Parameters: a Review. Materials Reports, 2022, 36(21): 20080263-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080263  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20080263
1 Martin J H, Yahata B D, Hundley J M, et al. Nature, 2017, 549, 7672.
2 Tobias M, Martin L, Lozanovski B, et al. Materials & Design, 2019, 183, 108137.
3 Mohsin T M. Materials Today: Proceedings, 2018, 5(9), 17906.
4 Tolosa I, Garciandía F, Zubiri F, et al. International Journal of Advanced Manufacturing Technology, 2010, 51, 639.
5 Yuan P, Gu D. Journal of Physics D: Applied Physics, 2015, 48(3), 16.
6 Li C J, Tsai T W, Tseng C C. Physics Procedia, 2016, 83, 1444.
7 Li B Q. Selective laser melting of AlSi10Mg: simulation and experiments. Master's Thesis, North University of China, China, 2019 (in Chinese).
李保强. 选区激光熔化AlSi10Mg成形过程数值模拟与实验研究. 硕士学位论文, 中北大学, 2019.
8 Tan P F, Kiran R, Zhou K. Journal of Manufacturing Processes, 2021, 64, 816.
9 Nesma T A, Nicola M E, Ian A, et al. Additive Manufacturing, 2014, 1-4, 77.
10 Tang X, Zhang S, Zhang C H,et al. Materials Characterization, 2020, 170, 110718.
11 Li R D. Research on the key basic issues in selective laser melting of me-tallic powder. Ph.D. Thesis, Huazhong University of Science & Techno-logy, China, 2010 (in Chinese).
李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究. 博士学位论文, 华中科技大学,2010.
12 Pal S, Lojen G, Hudak R, et al. Additive Manufacturing, 2020, 33, 101147.
13 Gu D D. Direct laser sintering of Cu-based metal powder: key processes and basic Mechanisms. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2007 (in Chinese).
顾冬冬. 激光烧结铜基合金的关键工艺及基础研究. 博士学位论文, 南京航天航空大学, 2007.
14 Mushtaq K, Phill D. Rapid Prototyping Journal, 2012, 18(1), 81.
15 Eleftherios L, Peter F, Christopher J S. Journal of Materials Processing Technology, 2010, 211(2), 275.
16 Yadroitsev I S, Gusarov A. Journal of Materials Processing Technology, 2010, 210(12), 1624.
17 Cunningham R W, Zhao C, Parab N, et al. Science, 2019, 363(6429), 849.
18 Xiao R, Yang W, Chen K. Applied Laser, 2007, 27, 13.
19 Kan X F, Yin Y J, Yang D C, et al. Optics & Laser Technology, 2021, 142, 107136.
20 Petri L, Tuomas R, Anssi L, et al. Physics Procedia, 2016, 83, 26.
21 Monroy K, Delgado J, Ciurana J. Procedia Engineering, 2013, 63, 361.
22 Gong H J, Khalid R, Gu H F, et al. Additive Manufacturing, 2014, 1(4), 87.
23 Zhao C, Fezzaa K, Cunningham R W, et al. Scientific Reports, 2017, 7(1), 3602.
24 Guo M, Gu D, Xi L, et al. International Journal of Refractory Metals and Hard Materials, 2019, 79, 37.
25 Rai R, Elmer J W, Palmer T A, et al. Journal of Physics D: Applied Physics, 2007, 40(18), 5753.
26 Yang J J. Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting. Ph.D. Thesis, Huazhong University of Science & Technology, China, 2017 (in Chinese).
杨晶晶. 激光选区熔化成形Ti-6Al-4V合金的组织演变及调控. 博士学位论文, 华中科技大学, 2017.
27 Guraya T, Singamneni S, Chen Z W. Journal of Alloy and Compounds, 2019, 792, 151.
28 Zhang Y. The simulation research on the keyhole effect of deep penetration laser welding based on a novel “Sandwich” method. Ph.D. Thesis, Hunan University, China, 2005 (in Chinese).
张屹. 基于“三明治”新方法的激光深熔焊接小孔效应的模拟研究. 博士学位论文, 湖南大学, 2005.
29 Liao S H. Numerical simulation and experiment study of the nail-head weld shape with high power laser welding. Master's Thesis, Hunan University, China, 2014 (in Chinese).
廖生慧. 高功率激光焊接钉子头焊缝的数值模拟与试验研究. 硕士学位论文, 湖南大学, 2014.
30 Chen Q, Gildas G, Gandin C A, et al. Additive Manufacturing, 2018, 21,713.
31 Le T N, Lo Y L. Materials & Design, 2019, 179, 107866.
32 Cassiopée G, Emilie L G, Eric L, et al. Additive Manufacturing, 2018, 22, 165.
33 Yin Y J. Study of flow law, microstructure and mechanical properties of 316L stainless steel by selective laser melting. Ph.D. Thesis, University of Science and Technology Beijing, China, 2019 (in Chinese).
尹衍军. 选区激光熔化成形316L不锈钢流动规律及组织、性能研究. 博士学位论文, 北京科技大学, 2019.
34 Sun X K. Study on melt pool morphology and porosity defect of GH4169 alloy fabricated by selective laser melting. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
孙雄凯. GH4169合金选区激光熔化熔池形态及气孔缺陷研究. 硕士学位论文, 哈尔滨工业大学, 2018.
35 Liu Z, Zhang D Y, Feng Z, et al. Applied Laser, 2017(2), 7 (in Chinese).
刘臻, 张冬云, 冯喆,等.应用激光, 2017(2), 7.
36 Khorasani A M, Gibson I, Godarzvand C N, et al. Measurement, 2016, 92, 534.
37 Wu W H, Yang Y Q, Mao G S. Manufacturing Technology & Machine Tool, 2014(4), 46 (in Chinese).
吴伟辉, 杨永强, 毛桂生.制造技术与机床, 2014(4), 46.
38 Zhou X. Research on micro-scale melt characteristics and solidified microstructures in selective laser melting. Ph.D. Thesis, Tsinghua University, China, 2016 (in Chinese).
周鑫. 激光选区熔化微尺度熔池特性与凝固微观组织. 博士学位论文, 清华大学, 2016.
39 Srinivasa R C, Raja A, Priyanka N, et al. Materials Science & Enginee-ring A, 2019, 750, 141.
40 Hann D B, Iammi J, Folkes J. Journal of Physics D: Applied Physics. 2011, 44, 445401.
41 Igor P, Vadim S, Artem K, et al. Intermetallics, 2019, 112, 10655.
42 Sun J, Zhu X G, Li P, et al. Materials for Mechanical Engineering, 2020, 44(1), 51 (in Chinese).
孙靖, 朱小刚, 李鹏,等.机械工程材料, 2020, 44(1), 51.
43 Attar H, Calin M, Zhang L C, et al. Materials Science and Engineering A, 2014, 59, 170.
44 Scipioni B U, Wolfer A J, Matthews M J, et al. Materials & Design, 2017, 113, 331.
45 Asuka S, Ryoya N, Naoki T, et al. Additive Manufacturing, 2019, 28, 160.
46 Emrecan S. Additive Manufacturing, 2020, 31, 100984.
47 King W E, Barth H D, Castillo V M, et al. Journal of Materials Proce-ssing Technology, 2014, 214(12), 2915.
48 Zakrzewski T, Kozak J, Witt M et al. Procedia CIRP, 2020, 95 115.
49 Umberto S B, Alexander J W, Manyalibo J M, et al. Materials & Design, 2017, 113, 331.
50 Wu H, Ren J Y, Huang Q L, et al. Journal of Micromechanics and Molecular Physics, 2017, 2(4), 1750017.
51 Li J C, Hu J X, Cao L C, et al. Journal of Manufacturing Processes, 2021, 68, 198
52 Imade K, Etienne P, Patrice P, et al. Journal of Materials Processing Technology, 2018, 255, 536.
53 Duan W, Zhao Z, Ji H W, et al.Materials Reports B:Research Papers, 2019, 33(5), 94 (in Chinese).
段伟, 赵哲, 吉红伟, 等.材料导报:研究篇, 2019, 33(5), 94.
54 Zhou Y T, Wei Z Y, Du J, et al. Applied Laser, 2016, 36(6), 656.
邹亚桐, 魏正英, 杜军,等.应用激光, 2016, 36(6), 656.
55 Li J F, Wei Z Y. Materials Science and Engineering, 2017, 269(1), 21.
56 Yang T Y. Study on performance prediction and acoustic signal of laser selective melting molding parts. Master's Thesis, Lanzhou University of Technology, China, 2019 (in Chinese).
杨天雨. 激光选区熔化成型件性能预测及声信号检测研究. 硕士学位论文, 兰州理工大学, 2019.
20080263-857 Xia T, Guo J B, Zhao Y H. Hot Working Technology, 2021, 50(4), 29 (in Chinese).
夏田, 郭建斌, 赵一号.热加工工艺, 2021, 50(4), 29.
58 Liu S, Zhu H, Peng G, et al. Materials & Design, 2018, 142, 319.
59 Verhaeghe F, Craeghs T, Heulens J, et al. Acta Materialia, 2009, 57(20), 6006.
60 Weingarten C, Buchbinder D, Pirch N, et al. Journal of Materials Processing Technology, 2015, 221, 112.
61 Mondal S, Paul C P, Kukreja L M, et al. International Journal of Advanced Manufacturing Technology, 2013, 66(1-4), 91.
62 Ökten Korhan, Biyikoɡˇlu Atilla. Optics & Laser Technology, 2021, 137, 106825.
63 Zhuang J R, Lee Y T, Hsieh W H, et al. Optics & Laser Technology, 2018, 103, 59.
64 Loh L E, Chua C K, Yeong W Y, et al. International Journal of Heat and Mass Transfer, 2015, 80, 288.
65 Lei L P, Murakawa H, Shi Y W, et al. Computational Materials Science, 2011, 21, 276.
66 Bauereiß A, Scharowsky T, Körner C. Journal of Materials Processing Technology, 2014, 214(11), 2522.
67 Yu G Q. Mesoscopic simulation and experimental study on selective laser melting of aluminum alloy. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2017 (in Chinese).
余冠群. 铝合金粉末选区激光熔化过程的介观模拟与实验研究. 硕士学位论文, 南京航空航天大学, 2017.
68 Xu L,Du Y B,Zhang L. Journal of Chongqing Technology and Business University(Natural Science Edition), 2021,38(1),1(in Chinese).
许磊,杜彦斌,张磊. 重庆工商大学学报(自然科学版),2021,38(1),1.
69 Gürtler F J, Karg M, Leitz K H, et al. Physics Procedia, 2013, 41, 874.
70 Carolin K, Andreas B, Elham A. Modelling & Simulation in Materials Science & Engineering, 2013, 21(8), 5011.
71 Yin H, Felicelli S D. Acta Materialia, 2009, 58(4), 1455.
72 Zheng M, Wei L, Chen J, et al. International Journal of Heat and Mass Transfer, 2019, 140, 1091.
73 Yang K V, Rometsch P, Jarvis T, et al. Materials Science and Enginee-ring: A, 2017, 712, 166.
74 Pang H. Study on laser melting process and properties of Mo and Mo-5Co alloys. Master's Thesis, Harbin Engineering University, China, 2019 (in Chinese).
庞红. Mo、Mo-5Co合金选区激光熔化成形工艺及性能研究. 硕士学位论文, 哈尔滨工程大学, 2019.
75 Seede R, Shoukr D, Zhang B, et al. Acta Materialia, 2020, 186, 199.
76 Su X, Yang Y. Journal of Materials Processing Technology, 2012, 212(10), 2074.
[1] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[2] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[3] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[4] 孙伟, 张淑婷, 杜开平, 欧阳佩旋, 杨谨赫. 基于有限元法冶金冷轧辊表面替代电镀铬涂层的设计与研究[J]. 材料导报, 2022, 36(7): 21060140-6.
[5] 陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
[6] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[7] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[8] 房玉鑫, 王优强, 张平, 罗恒. SiCp/Al复合材料切削加工中颗粒失效及表面缺陷形成机理仿真研究[J]. 材料导报, 2022, 36(13): 21010146-8.
[9] 王楷, 梅瑞斌. “人工智能+有限元”模型在轧制领域的研究进展[J]. 材料导报, 2022, 36(13): 20110127-12.
[10] 马玉天, 许佳玉, 高钰璧, 刘博, 胡勇, 丁雨田, 陈大林, 陈韩锋. SLM成形Inconel 738合金缺陷的演变及形成机理[J]. 材料导报, 2022, 36(13): 21040269-7.
[11] 石玗, 朱珍文, 张刚, 李璐鹏. 金属电弧增材成形控制关键技术及研究现状[J]. 材料导报, 2022, 36(12): 20090337-8.
[12] 张鹏飞, 王德成, 程鹏, 邵晨曦. 基于电磁热耦合的感应加热65Mn带钢有限元仿真[J]. 材料导报, 2022, 36(12): 20110208-6.
[13] 安宁, 吴浩恺, 朱敏, 郑月红, 占发奇, 喇培清. 盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能[J]. 材料导报, 2022, 36(11): 21010240-7.
[14] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[15] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed