Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21040269-7    https://doi.org/10.11896/cldb.21040269
  金属与金属基复合材料 |
SLM成形Inconel 738合金缺陷的演变及形成机理
马玉天1, 许佳玉2,3, 高钰璧2,3, 刘博2,3, 胡勇2,3, 丁雨田2,3,*, 陈大林1, 陈韩锋1
1 金川集团股份有限公司镍钴资源综合利用国家重点实验室,甘肃 金昌 737100
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 兰州理工大学材料科学与工程学院,兰州 730050
Evolution and Formation Mechanism of Defect in SLM-Built Inconel 738 Alloy
MA Yutian1, XU Jiayu2,3, GAO Yubi2,3, LIU Bo2,3, HU Yong2,3, DING Yutian2,3,*, CHEN Dalin1, CHEN Hanfeng1
1 State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchuan Group Co., Ltd., Jinchang 737100, Gansu, China
2 State Key Laboratory of Advanced and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 18254KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过选区激光熔化(SLM)成形Inconel 738合金,在不同工艺参数下分别对其进行单道次、多道次以及多层多道次的演化实验,旨在对其裂纹形成机制进行深入的研究。研究表明,当激光线能量密度E过高或者过低时,形成的孔隙会诱导裂纹的形成。在SLM成形Inconel 738合金中凝固裂纹和液化裂纹均有发生,液化裂纹占主要地位。凝固裂纹主要在凝固末期形成,由于晶体快速生长为枝晶骨架,其本身的变形发展良好,但枝晶间残留的液相则不易流动,在热拉应力的作用下产生的微小缝隙将无法被液体及时填充而形成凝固裂纹。而液化裂纹的形成主要是由于晶界处B元素的偏聚,促进晶界处形成低熔点的γ+γ′相,在循环热的作用下熔化形成液膜,液膜使得晶界处抗拉强度降低,在热拉应力的作用下形成液化裂纹。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马玉天
许佳玉
高钰璧
刘博
胡勇
丁雨田
陈大林
陈韩锋
关键词:  Inconel 738合金  选区激光熔化(SLM)  激光线能量密度  缺陷    
Abstract: The evolution experiments of single-track, multi-tracks and multi-layers experiments were carried out on Inconel 738 alloy fabricated by selective laser melting (SLM) under different parameters, in order to further investigate the formation mechanism of crack defects. The results show that the formation of porosity will induce the formation of cracks when the laser energy density E is too high or too low. Both solidification cracks and liquation cracks occur in Inconel 738 alloy formed by SLM, and liquation cracks are dominated. At the end of solidification, the crystals rapidly grow to form a dendrite framework. At this time, the deformation of the dendrite framework can well develop, but the residual liquid phase between the crystals is hard to flow, and the tiny gap generating under the action of thermal tensile stress will not be filled in time, leading to solidification cracks. The formation of liquation crack is mainly due to the segregation of B element at grain boundaries, which leads to the formation of γ + γ′ phase with low melting point at grain boundaries. Under cyclic heat, liquid film is formed leading to the reduction of tensile strength at grain boundaries, which is pulled apart by thermal tensile stress to form liquation cracks.
Key words:  Inconel 738 alloy    selective laser melting (SLM)    laser line energy density    defect
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TG146.1+5  
基金资助: 甘肃省科技重大专项(17ZD2GC011);镍钴资源综合利用国家重点实验室开放课题;兰州理工大学红柳一流学科建设计划
通讯作者:  * dingyt@lut.edu.cn   
作者简介:  马玉天,博士,教授级高级工程师。1991年7月本科毕业于昆明理工大学热能工程专业;2006年3月博士毕业于中南大学冶金物理化学专业;2006年3月至今,在金川集团股份有限公司工作。现任金川镍钴研究设计院院长、镍钴资源综合利用国家重点实验室副主任。主持国家级项目1项、省级科研项目3项,参与国际合作项目1项,主导省级科研项目5项,负责10余项建设项目。发表论文34篇,获发明专利11项。指导潘从明研究项目《镍阳极泥中铂钯铑铱绿色高效提取技术》获2019年国家科学技术进步奖二等奖(工人农民技术创新组)。
丁雨田,兰州理工大学教授,博士研究生导师。1983年于西安交通大学铸造专业毕业,获工学学士学位;1986年于西安交通大学铸造专业毕业,获工学硕士学位;2005年兰州理工大学毕业,获工学博士学位。2016年获得冶金有色工业科技进步一等奖。现主要研究方向为镍基变形高温合金、3D打印用镍基高温合金粉末制备及镍基高温合金素化。在国内外学术刊物及学术会议上发表论文260余篇。
引用本文:    
马玉天, 许佳玉, 高钰璧, 刘博, 胡勇, 丁雨田, 陈大林, 陈韩锋. SLM成形Inconel 738合金缺陷的演变及形成机理[J]. 材料导报, 2022, 36(13): 21040269-7.
MA Yutian, XU Jiayu, GAO Yubi, LIU Bo, HU Yong, DING Yutian, CHEN Dalin, CHEN Hanfeng. Evolution and Formation Mechanism of Defect in SLM-Built Inconel 738 Alloy. Materials Reports, 2022, 36(13): 21040269-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040269  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21040269
1 Han K, Wang H, Peng F, et al. Vacuum, 2019, 162, 214.
2 Xu J, Gruber H, Deng D, et al. Acta Materialia, 2019, 179,142.
3 Heydari D, Fard A S, Bakhshi A, et al. Journal of Materials Processing Technology, 2014, 214(3), 681.
4 Panwisawas C, Tang Y T, Reed R C. Nature Communications, 2020, 11(1), 2327.
5 Chen J Y, Tang D W. Journal of Chongqing University of Technology (Natural Science), 2020, 34(10), 111 (in Chinese).
陈金友, 唐德文. 重庆理工大学学报(自然科学版), 2020, 34(10), 111.
6 Liu L F, Ding Q Q, Zhong Y, et al. Materials Today, 2018, 21(4), 354.
7 Duan R X, Huang B Y, Liu Z M, et al.The Chinese Journal of Nonferrous Metals, 2018, 28(8), 1568 (in Chinese).
段然曦, 黄伯云, 刘祖铭,等. 中国有色金属学报, 2018, 28(8),1568.
8 Xu J Y, Ding Y Y, Hu Y, et al. Rare Metal Materials and Engineering, 2019, 48(11), 3727 (in Chinese).
许佳玉,丁雨田,胡勇,等. 稀有金属材料与工程, 2019, 48(11), 3727.
9 Perevoshchikova N, Rigaud J, Sha Y, et al. Rapid Prototyping Journal, 2017, 23(5), 881.
10 Wang H, Zhang X, Wang G B, et al. Journal of Alloys and Compounds, 2019, 807, 151662.
11 Xu J J, Lin X, Zhao Y F, et al. Metallurgical and Materials Transactions A, 2018, 49, 1.
12 Xu J J, Lin X, Guo P F, et al. Journal of Alloys and Compounds, 2018, 749, 859.
13 Cloots M, Uggowitzer P J, Wegener K. Materials & Design, 2016, 89, 770.
14 Qiu C, Chen H, Liu Q, et al. Materials Characterization, 2019, 148, 330.
15 Ramakrishnan A, Dinda G P.Materials Science and Engineering: A, 2019, 740-741, 1.
16 Zhang X, Chen H, Xu L, et al.Materials & Design, 2019, 183, 108105.
17 Shi X Z, Wang H X, Feng W W, et. al. International Journal of Refractory Metals and Hard Materials, 2020, 91, 105247.
18 Gu D, Wang Z, Shen Y, et al. Applied Surface Science, 2009, 255(22), 9230.
19 Li R, Liu J, Shi Y, et al. The International Journal of Advanced Manufacturing Technology, 2012, 59(9-12), 1025.
20 Debroy T, Wei H, Zuback J, et al. Progress in Materials Science, 2018, 92, 112.
21 Liang X, Deng D S, Nave J A, et al. Journal of Mathematical Fluid Mechanics, 2011, 683, 235.
22 Wang C L. Study on the process parameters have an influence on the for-ming process of selective laser melting of IN625. Master's Thesis, Shandong University of Technology, China, 2018 (in Chinese).
王春临. 激光选区熔化增材制造IN625镍基高温合金工艺研究. 硕士学位论文, 山东理工大学, 2018.
23 Letenneur M, Kreitcberg A, Brailovski V. Journal of Manufacturing and Materials Processing, 2019, 3, 21.
24 Yadroitsev I, Yadroitsava I, Bertrand P, et al.Rapid Prototyping Journal, 2012, 18(3), 201.
25 Roehling J D, Perron A, Fattebert J L, et al. JOM: the Journal of the Minerals, Metals & Materials Society, 2018, 70(8), 1589.
26 Seede R, David S, Zhang B, et al. Acta Materialia, 2020, 186, 199.
27 Wu W H, Yang Y Q, Wang D. Journal of South China University of Technology (Natural Science Edition), 2010, 38(5), 110 (in Chinese).
吴伟辉, 杨永强, 王迪. 华南理工大学学报(自然科学版), 2010, 38(5), 110.
28 Xu J Y, Ding Y T, Gao Y B, et al.Materials & Design, 2021, 209, 109940.
29 Gao P, Wei K W, Yu H C, et al. Acta Metallurgica Sinica, 2018, 54(7), 999 (in Chinese).
高飘, 魏恺文, 喻寒琛, 等. 金属学报, 2018, 54(7), 999.
30 Zhao C, Parab N D, Li X, et al. Science, 2020, 370(6520), 1080.
31 Ma M, Wang Z, Wang D, et al. Optics and Laser Technology, 2013, 45, 209.
32 Peng Q, Dong S Y, Yan S X, et al. Materials Reports A: Review Papers, 2018, 32(8), 2666 (in Chinese).
彭谦, 董世运, 闫世兴,等. 材料导报:综述篇, 2018, 32(8), 2666.
33 Lippold J C. Welding metallurgy and weldability, John Wiley & Sons Incorporated, US, 2015.
34 Yu L, Cao R. Acta Metallurgica Sinica, 2021, 57(1), 18 (in Chinese).
余磊, 曹睿. 金属学报, 2021, 57(1), 18.
35 Ding Y T, Wang H, Xu J Y, et al. Rare Metal Materials and Enginee-ring, 2020, 49(12), 4311 (in Chinese).
丁雨田, 王浩, 许佳玉, 等. 稀有材料科学与工程, 2020, 49(12), 4311.
36 Richards N L, Chaturvedi M C. International Materials Reviews, 2000, 45(3), 109.
37 Zhu H Q, Tang Y J, Guo S R, et al. Acta Metallurgica Sinica, 1994, 30(7), 312 (in Chinese).
朱洪群, 唐亚俊, 郭守仁, 等. 金属学报, 1994, 30(7), 312.
[1] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[2] 盛鹰, 贾彬, 王汝恒, 陈国平. 基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证[J]. 材料导报, 2022, 36(4): 20110172-10.
[3] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[4] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[5] 唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
[6] 蒋骞, 张静, 谢亮, 孟军华, 张兴旺. 氧化镓薄膜外延生长及其应用研究进展[J]. 材料导报, 2022, 36(13): 20110062-11.
[7] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[8] 李时春, 莫彬, 肖罡, 苏飞. 激光增材制造成形质量表征与调控研究进展[J]. 材料导报, 2022, 36(10): 20100127-9.
[9] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[10] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[11] 李丹, 李书良, 柴玉琨, 刘健, 林震霞. 燃料包壳管超声波幅与缺陷深度对应关系[J]. 材料导报, 2021, 35(Z1): 473-475.
[12] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[13] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[14] 贾雯, 袁小亚, 冯紫娟, 吴雪, 彭冬, 刘毅. 一锅法合成缺陷型Bi/BiOBr纳米复合材料及其可见光驱动去除水体六价铬离子和有机染料的研究[J]. 材料导报, 2021, 35(24): 24032-24040.
[15] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed