Evolution and Formation Mechanism of Defect in SLM-Built Inconel 738 Alloy
MA Yutian1, XU Jiayu2,3, GAO Yubi2,3, LIU Bo2,3, HU Yong2,3, DING Yutian2,3,*, CHEN Dalin1, CHEN Hanfeng1
1 State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchuan Group Co., Ltd., Jinchang 737100, Gansu, China 2 State Key Laboratory of Advanced and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 3 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Abstract: The evolution experiments of single-track, multi-tracks and multi-layers experiments were carried out on Inconel 738 alloy fabricated by selective laser melting (SLM) under different parameters, in order to further investigate the formation mechanism of crack defects. The results show that the formation of porosity will induce the formation of cracks when the laser energy density E is too high or too low. Both solidification cracks and liquation cracks occur in Inconel 738 alloy formed by SLM, and liquation cracks are dominated. At the end of solidification, the crystals rapidly grow to form a dendrite framework. At this time, the deformation of the dendrite framework can well develop, but the residual liquid phase between the crystals is hard to flow, and the tiny gap generating under the action of thermal tensile stress will not be filled in time, leading to solidification cracks. The formation of liquation crack is mainly due to the segregation of B element at grain boundaries, which leads to the formation of γ + γ′ phase with low melting point at grain boundaries. Under cyclic heat, liquid film is formed leading to the reduction of tensile strength at grain boundaries, which is pulled apart by thermal tensile stress to form liquation cracks.
1 Han K, Wang H, Peng F, et al. Vacuum, 2019, 162, 214. 2 Xu J, Gruber H, Deng D, et al. Acta Materialia, 2019, 179,142. 3 Heydari D, Fard A S, Bakhshi A, et al. Journal of Materials Processing Technology, 2014, 214(3), 681. 4 Panwisawas C, Tang Y T, Reed R C. Nature Communications, 2020, 11(1), 2327. 5 Chen J Y, Tang D W. Journal of Chongqing University of Technology (Natural Science), 2020, 34(10), 111 (in Chinese). 陈金友, 唐德文. 重庆理工大学学报(自然科学版), 2020, 34(10), 111. 6 Liu L F, Ding Q Q, Zhong Y, et al. Materials Today, 2018, 21(4), 354. 7 Duan R X, Huang B Y, Liu Z M, et al.The Chinese Journal of Nonferrous Metals, 2018, 28(8), 1568 (in Chinese). 段然曦, 黄伯云, 刘祖铭,等. 中国有色金属学报, 2018, 28(8),1568. 8 Xu J Y, Ding Y Y, Hu Y, et al. Rare Metal Materials and Engineering, 2019, 48(11), 3727 (in Chinese). 许佳玉,丁雨田,胡勇,等. 稀有金属材料与工程, 2019, 48(11), 3727. 9 Perevoshchikova N, Rigaud J, Sha Y, et al. Rapid Prototyping Journal, 2017, 23(5), 881. 10 Wang H, Zhang X, Wang G B, et al. Journal of Alloys and Compounds, 2019, 807, 151662. 11 Xu J J, Lin X, Zhao Y F, et al. Metallurgical and Materials Transactions A, 2018, 49, 1. 12 Xu J J, Lin X, Guo P F, et al. Journal of Alloys and Compounds, 2018, 749, 859. 13 Cloots M, Uggowitzer P J, Wegener K. Materials & Design, 2016, 89, 770. 14 Qiu C, Chen H, Liu Q, et al. Materials Characterization, 2019, 148, 330. 15 Ramakrishnan A, Dinda G P.Materials Science and Engineering: A, 2019, 740-741, 1. 16 Zhang X, Chen H, Xu L, et al.Materials & Design, 2019, 183, 108105. 17 Shi X Z, Wang H X, Feng W W, et. al. International Journal of Refractory Metals and Hard Materials, 2020, 91, 105247. 18 Gu D, Wang Z, Shen Y, et al. Applied Surface Science, 2009, 255(22), 9230. 19 Li R, Liu J, Shi Y, et al. The International Journal of Advanced Manufacturing Technology, 2012, 59(9-12), 1025. 20 Debroy T, Wei H, Zuback J, et al. Progress in Materials Science, 2018, 92, 112. 21 Liang X, Deng D S, Nave J A, et al. Journal of Mathematical Fluid Mechanics, 2011, 683, 235. 22 Wang C L. Study on the process parameters have an influence on the for-ming process of selective laser melting of IN625. Master's Thesis, Shandong University of Technology, China, 2018 (in Chinese). 王春临. 激光选区熔化增材制造IN625镍基高温合金工艺研究. 硕士学位论文, 山东理工大学, 2018. 23 Letenneur M, Kreitcberg A, Brailovski V. Journal of Manufacturing and Materials Processing, 2019, 3, 21. 24 Yadroitsev I, Yadroitsava I, Bertrand P, et al.Rapid Prototyping Journal, 2012, 18(3), 201. 25 Roehling J D, Perron A, Fattebert J L, et al. JOM: the Journal of the Minerals, Metals & Materials Society, 2018, 70(8), 1589. 26 Seede R, David S, Zhang B, et al. Acta Materialia, 2020, 186, 199. 27 Wu W H, Yang Y Q, Wang D. Journal of South China University of Technology (Natural Science Edition), 2010, 38(5), 110 (in Chinese). 吴伟辉, 杨永强, 王迪. 华南理工大学学报(自然科学版), 2010, 38(5), 110. 28 Xu J Y, Ding Y T, Gao Y B, et al.Materials & Design, 2021, 209, 109940. 29 Gao P, Wei K W, Yu H C, et al. Acta Metallurgica Sinica, 2018, 54(7), 999 (in Chinese). 高飘, 魏恺文, 喻寒琛, 等. 金属学报, 2018, 54(7), 999. 30 Zhao C, Parab N D, Li X, et al. Science, 2020, 370(6520), 1080. 31 Ma M, Wang Z, Wang D, et al. Optics and Laser Technology, 2013, 45, 209. 32 Peng Q, Dong S Y, Yan S X, et al. Materials Reports A: Review Papers, 2018, 32(8), 2666 (in Chinese). 彭谦, 董世运, 闫世兴,等. 材料导报:综述篇, 2018, 32(8), 2666. 33 Lippold J C. Welding metallurgy and weldability, John Wiley & Sons Incorporated, US, 2015. 34 Yu L, Cao R. Acta Metallurgica Sinica, 2021, 57(1), 18 (in Chinese). 余磊, 曹睿. 金属学报, 2021, 57(1), 18. 35 Ding Y T, Wang H, Xu J Y, et al. Rare Metal Materials and Enginee-ring, 2020, 49(12), 4311 (in Chinese). 丁雨田, 王浩, 许佳玉, 等. 稀有材料科学与工程, 2020, 49(12), 4311. 36 Richards N L, Chaturvedi M C. International Materials Reviews, 2000, 45(3), 109. 37 Zhu H Q, Tang Y J, Guo S R, et al. Acta Metallurgica Sinica, 1994, 30(7), 312 (in Chinese). 朱洪群, 唐亚俊, 郭守仁, 等. 金属学报, 1994, 30(7), 312.