Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20110062-11    https://doi.org/10.11896/cldb.20110062
  无机非金属及其复合材料 |
氧化镓薄膜外延生长及其应用研究进展
蒋骞1,2, 张静1,*, 谢亮1, 孟军华3, 张兴旺2,4,*
1 北方工业大学信息学院,北京 100144
2 中国科学院半导体研究所,半导体材料科学重点实验室,北京 100083
3 北京工业大学理学部,北京 100124
4 中国科学院大学材料与光电研究中心, 北京 100049
Research Progress on Epitaxy Growth and Application of Gallium Oxide Thin Films
JIANG Qian1,2, ZHANG Jing1,*, XIE Liang1, MENG Junhua3, ZHANG Xingwang2,4,*
1 School of Information Science and Technology, North China University of Technology, Beijing 100144, China
2 Key Lab oratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
3 Faculty of Science, Beijing University of Technology, Beijing 100124, China
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 6197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 β相氧化镓较碳化硅、氮化镓等第三代半导体材料具有更加出色的材料特性,如更宽的禁带宽度(~4.9 eV)、更高的击穿场强(~8 MV/cm)、更大的巴利加优值(3 400)和更低的衬底生长成本等,在大功率电子器件和日盲探测器等方面展现出巨大的应用前景。外延生长高质量的氧化镓薄膜是制备高性能器件的前提与基础。目前,虽然在高质量氧化镓单晶生长和器件研究等方面已取得了显著进展,但是仍存在较多问题,如异质外延晶体质量的提高、p型掺杂的实现、器件性能优化等。本文总结了近年来国内外研究者在氧化镓薄膜的生长技术、同质/异质外延、半导体掺杂、电学性质、接触特性及其在功率器件和紫外光电探测器应用等方面的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋骞
张静
谢亮
孟军华
张兴旺
关键词:  氧化镓  外延  缺陷  掺杂    
Abstract: Monoclinic gallium oxide (β-Ga2O3) is an emerging wide bandgap semiconductor with an ultrawide bandgap (~4.9 eV) at room temperature, an high breakdown field strength (~8 MV/cm), a Baliga's figure of merit (BFOM) of 3 400, and availability of native single crystal substrates using inexpensive melt-based growth methods. These attractive properties of β-Ga2O3 make it an ideal candidate for potential applications such as high-power electronic devices and solar blind ultraviolet (UV) photodetectors. It is well known that the high quality epitaxial layer is the prerequisite for the fabrication of high performance devices. Up to now, the β-Ga2O3 epitaxial layers have been prepared by various methods, and several kinds of devices have been fabricated. However, many challenges still exist, including heteroepitaxial growth maturity, p-type doping, and device performance optimization. This article reviews the current status of the synthesis technologies, the substrates for homoepitaxy/heteroepitaxy, doping, electrical properties and the applications of power devices and ultraviolet photodetectors.
Key words:  gallium oxide    epitaxy    defect    doping
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TQ174  
基金资助: 北京市科技计划(Z191100004619004); 国家自然科学基金(61874106)
通讯作者:  * zhangj@ncut.edu.cn;xwzhang@semi.ac.cn   
作者简介:  蒋骞,2019年毕业于绍兴文理学院,获得学士学位。现为北方工业大学与中国科学院半导体研究所联合培养硕士研究生,在张静教授与张兴旺研究员的指导下进行研究。主要从事宽禁带半导体的研究。
张静,北方工业大学信息学院教授。1996年本科毕业于兰州大学物理系,2003年于兰州大学电子器件与材料工程专业取得硕士学位,主要从事硅基SiC功率器件的研究,以及集成电路相关的测试工作。先后承担了国家自然科学基金,作为课题负责人参与了国家科技部重大专项等。
张兴旺,中国科学院半导体研究所研究员。于1994和1999年分别从兰州大学物理系获学士和博士学位。1999—2004年分别在中国香港中文大学、德国乌尔姆大学进行博士后研究及作为洪堡学者,并于2004年加入中科院半导体所。主要从事二维材料与光电器件、光伏材料与器件以及宽带隙半导体材料与器件研究。已主持或承担国家重点研发计划、科技部863、973计划、自然科学基金以及中科院战略先导计划等项目20余项,在Nature Mater., Nature Energy, Nature Photon., Nature Commun., Adv. Mater.等学术期刊发表SCI论文170篇,论文被他引6 800余次,获授权发明专利22项。
引用本文:    
蒋骞, 张静, 谢亮, 孟军华, 张兴旺. 氧化镓薄膜外延生长及其应用研究进展[J]. 材料导报, 2022, 36(13): 20110062-11.
JIANG Qian, ZHANG Jing, XIE Liang, MENG Junhua, ZHANG Xingwang. Research Progress on Epitaxy Growth and Application of Gallium Oxide Thin Films. Materials Reports, 2022, 36(13): 20110062-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110062  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20110062
1 Roy R, Hill V G, Osburn E F, et al. Journal of the American Chemical Society, 1952, 74(3), 719.
2 Playford H Y, Hannon A C, Barney E R, et al. Chemistry - A European Journal, 2013, 19 (8), 2803.
3 Feng Z X, Bhuiyan A F M A U, Karim M R,et al. Applied Physics Letters, 2019, 114, 250601.
4 Orita M, Ohta H, Hirano M,et al. Applied Physics Express, 2000, 77, 4166.
5 Jessen G, Chabak K, Green A, et al. In: Conference Record of 75th IEEE Device Research Conference (DRC). South Bend, 2017, pp. 17082340.
6 Pearton S J, Yang J, Cary H P,et al. Applied Physics Reviews, 2018, 5, 011301.
7 Baldini M, Albrecht M, Fiedler A,et al. ECS Journal of Solid State Science and Technology, 2017, 6(2), Q3040.
8 GotoK, Konishi K, Murakami H, et al. Thin Solid Films, 2018, 666, 182.
9 Li W S, Hu Z Y, Nomoto K,et al. In: Conference Record of IEEE International Electron Devices Meeting. San Francisco, 2018, pp. 18420919.
10 Park J H, McClintock R, Jaud A, et al. Applied Physics Express, 2019, 12, 9.
11 Liu Z, Li S, Yan Z Y,et al. Journal of Materials Chemistry C, 2020, 8, 5071.
12 Alema F, Zhang Y W, Osinsky A,et al. APL Materials, 2019, 7(12), 121110.
13 Akaiwa K, Ota K, Sekiyama T, et al. Physics Status Solidi A, 2020, 217(3), 1900632.
14 Ahmadi E, Koksaldi O S, Kaun S W, et al. Applied Physics Express, 2017, 10(4), 041102.
15 Ma N, Tanen N, Verma A,et al. Applied Physics Letters, 2016, 109(21), 212101.
16 Alema F, Zhang Y W, Osinsky A,et al. APL Materials, 2020, 8(2), 021110.
17 Ahmadi E, Oshima Y. Journal of Applied Physics, 2019, 126, 160901.
18 Akaiwa K, Kaneko K, Ichino K,et al. Japanese Journal of Applied Phy-sics, 2016, 55(12), 1202BA.
19 Xu Y, Zhang C F, Cheng Y L, et al. Materials, 2019, 12(22), 3670.
20 Alema F, Hertog B, Osinsky A,et al. Journal of Crystal Growth, 2017, 475, 77.
21 Miller R, Alema F, Osinsky A. IEEE Transactions on Semiconductor Manufacturing, 2018, 31(4), 467.
22 Anhar U B A F M, Feng Z X, Johnson J M, et al. Applied Physics Letters, 2019, 115(12), 120602.
23 Watahiki T, Yuda Y, Furukawa A,et al. Applied Physics Letters, 2017, 111, 222104.
24 Su J, Liu T, Liu J M,et al. Journal of Semiconductors, 2016, 37(10), 103004.
25 Leach J H, Udwary K, Rumsey J,et al. APL Materials, 2019, 7, 022504.
26 Sasaki K, Higashiwaki M, Kuramata A,et al. Journal of Crystal Growth, 2013, 378, 591.
27 Mauze A, Zhang Y, Itoh T,et al. APL Materials, 2020, 8, 021104.
28 Zhang Y W, Neal A, Xia Z B, et al. Applied Physics Letters, 2018, 112(17), 173502.
29 Leedy K D, Chabak K D, Vasilyev V,et al. Applied Physics Letters, 2017, 111, 012103.
30 Zhang X Y, Wang L, Wang X D,et al. Optics Express, 2020, 28(3), 4169.
31 Mizutani F, Higashi S, Inoue M,et al. Journal of Vacuum Science & Technology A, 2020, 38(2), 022412.
32 Schurig P, Couturier M, Becker M,et al. Physics Status Solidi A, 2019, 216(20), 1900385.
33 Schewski R, Baldini M, Irmscher K,et al. Journal of Applied Physics, 2016, 120(22), 225308.
34 Schewski R, Lion K, Fiedler A,et al. APL Materials, 2019, 7(2), 022515.
35 Bin A S, Gruneberg R, Wouters C,et al. Applied Physics Letters, 2020, 116, 182106.
36 Mazzolini P, Falkenstein A, Wouters C,et al. APL Materials, 2020, 8(1), 011107.
37 Mazzolini P, Vogt P, Schewski R,et al. APL Materials, 2019, 7(2), 022511.
38 Li Z M, Jiao T, Yu J Q,et al. Vacuum, 2020, 178, 109440.
39 Schewski R, Wagner G, Baldini M,et al. Applied Physics Express, 2015, 8(1), 011101.
40 Cao Q, He L N, Xiao H D,et al. Materials Science in Semiconductor Processing, 2018, 77, 58.
41 Wang D, He L N, Le Y, et al. Ceramics International, 2019, 46(4), 4568.
42 Boschi F, Bosi M, Berzina T, et al. Journal of Crystal Growth, 2016, 443, 25.
43 Zacherle T, Schmidt P C, Martin M. Physical Review B, 2013, 87(23), 235206.
44 Furthmüller J, Bechstedt F. Physical Review B, 2016, 93, 115204.
45 Varley J B, Peelaers H, Janotti A,et al. Journal of Physics: Condensed Matter, 2011, 23(33), 334212.
46 Kyrtsos A, Matsubara M, Bellotti E. Physical Review B, 2017, 95, 245202.
47 Deák P, Ho Q D, Seemann F,et al. Physical Review B, 2017, 95, 075208.
48 Varley J B, Weber J R, Janotti A,et al. Applied Physics Letters, 2010, 97, 142106.
49 Higashiwaki M, Sasaki K, Kamimura T,et al. Applied Physics Letters, 2013, 103(12), L123511.
50 Neal A T, Mou S, Rafique S,et al. Applied Physics Letters, 2018, 113(6), 062101.
51 Víllora E G, Shimamura K, Yoshikawa Y,et al. Applied Physics Letters, 2008, 92(20), 202120.
52 Chen Z, Saito K, Tanaka T,et al. Journal of Crystal Growth, 2015, 430, 28.
53 Chen Z, Saito K, Tanaka T,et al. Journal of Luminescence, 2016, 177, 48.
54 Guo Q X, Nishihagi K, Chen Z W,et al. Thin Solid Films, 2017, 639, 123.
55 Zheng T, Wang Q, Dang J N, et al. Computational Materials Science, 2020, 174, 109505.
56 Krishnamoorthy S, Xia Z B, Bajaj S,et al. Applied Physics Express, 2017, 10, 051102.
57 Kyrtsos A, Matsubara M, Bellotti E. Applied Physics Letters, 2018, 112, 032108.
58 Peelaers H, Lyons J L, Varley J B, et al. APL Materials, 2019, 7(2), 022519.
59 Wong M H, Lin C H, Kuramata A,et al. Applied Physics Letters, 2018, 113(10), 102103.
60 Kananen B E, Halliburton E L E, Scherrer M, et al. Applied Physics Letters, 2017, 111(7), 072102.
61 Skachkov D, Lambrecht W R L. Applied Physics Letters, 2019, 114, 202102.
62 Li L, Liao F, Hu X T. Superlattices and Microstructures, 2020, 141, 106502.
63 Ma J N, Lin J Y, Liu J Y,et al. Chemical Physics Letters, 2020, 746, 1308.
64 Hou C, Gazoni R M, Reeves R J,et al. Applied Physics Letters,2019, 114(3), 033502.
65 Farzana E, Zhang Z, Paul P K,et al. Applied Physics Letters, 2017, 110(20), 202102.
66 Jiang K, Lyle L A M, Favela E V, et al. ECS Transactions, 2019, 92 (7), 71.
67 Yao Y, Davis R F, Porter L M. Journal of Electronic Materials, 2017, 46(4), 2053.
68 Wong M H, Nakata Y, Kuramata A,et al. Applied Physics Express, 2017, 10, 041101.
69 Shi J J, Xia X C, Liang H W, et al. Journal of Mate-rials Science: Materials in Electronics, 2019, 30(4), 1.
20110062-1070 Carey P H, Yang J C, Ren F,et al. AIP Advances, 2017, 7(9), 095313.
71 Carey P H, Yang J C, Ren F,et al. Journal of Vacuum Science & Technology B, 2017, 35(6), 061201.
72 Lin C, Yuda Y, Wong M H, et al. IEEE Electron Device Letters, 2019, PP(99), 1.
73 Mun J K, Cho K, Chang W, et al. ECS Journal of Solid State Science and Technology, 2019, 8(7), Q3079.
74 Yang J C, Ren F, Tadjer M, et al. ECS Journal of Solid State Science and Technology, 2018, 7, Q92.
75 Hu Z Z, Zhou H, Feng Q, et al. IEEE Electron Device Letters, 2018, 39(10), 1564.
76 Gao Y Y, Li A, Feng Q, et al. Nanoscale Research Letters, 2019, 14(1), 8.
77 Yan X, Esqueda I S, Ma J, et al. Applied Physics Letters, 2018, 112(3), 032101.
78 Zhou H, Maize K, Qiu G, et al. Applied Physics Letters 2017, 111, 092102.
79 Yang J C, Fares C, Elhassani R, et al. ECS Journal of Solid State Science and Technology, 2019, 8(7), Q3159.
80 Bae J, Kim H W, Kang I H, et al. Journal of Materials Chemistry C, 2020, 8(6), 2687.
81 Noborio M, Suda J, Kimoto T. Applied Physics Express, 2008, 1, 101403.
82 Noborio M, Suda J, Kimoto T. IEEE Electron Device Letters, 2009, 30(8), 831.
83 Sun M, Zhang Y, Gao X, et al. IEEE Electron Device Letters, 2017, 38(4), 509.
84 Saitoh Y, Sumiyoshi K, Okada M, et al. Applied Physics Express, 2010, 3,081001.
85 Kizilyalli I C, Edwards A P, Aktas O, et al. IEEE Trans. Electron Devices, 2015, 62(2), 414.
86 Zhang Y H, Liu Z H, Tadjer M J, et al. IEEE Electron Device Letters, 2018, 38(8), 1097.
87 Cao P J, Wang Q, Rao C N, et al. Journal of Nanoscience and Nanotechnology, 2020, 20(4), 2550.
88 Han S, Liu S M, Lu Y M, et al. Journal of Alloys and Compounds, 2017, 664, 168.
89 Chen H, Ma X Z, Zhang J T, et al. Optical Materials Express, 2018, 8(4), 787.
90 Han W Y, Zhang Z W, Li Z M, et al. Journal of Materials Science: Materials in Electronics, 2018, 29, 9077.
91 Wang D H, Huang C, Liu X,et al. Advanced Optical Materials, 2020, 9(4), 2000893.
92 Jiang K, Sun X J, Zhang Z H, et al. Photonics Research., 2020, 8(7), 1243.
93 Qin Y, Li L H, Zhao X L, et al. ACS Photonics, 2020, 7, 812.
94 Yu J G, Dong L P, Peng B,et al. Journal of Alloys and Compounds, 2020, 821, 153532.
95 Yan Z Y, Li S, Liu Z,et al. Journal of Materials Chemistry C, 2020, 8(13), 4502.
96 Du X, Mei Z, Liu Z, et al. Advanced Materials, 2009, 21, 4625.
97 Baban C, Toyoda Y, Ogita M. Thin Solid Films, 2005, 484(1), 369.
98 Baban C, Toyoda Y, Ogita M. Japanese Journal of Applied Physics, 2004, 43(10), 7213.
99 Das B, Das B, Pal S,et al. AIP Conference Proceedings, 2020, 2220(1), 020013.
[1] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[2] 赵玉辉, 张雅荣, 吴勇民, 朱蕾, 郭俊, 汤卫平. NASICON结构Na3Zr2Si2PO12固体电解质研究进展[J]. 材料导报, 2022, 36(Z1): 21050235-9.
[3] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[4] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[5] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[6] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[7] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[8] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[9] 盛鹰, 贾彬, 王汝恒, 陈国平. 基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证[J]. 材料导报, 2022, 36(4): 20110172-10.
[10] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[11] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[12] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[13] 唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
[14] 马玉天, 许佳玉, 高钰璧, 刘博, 胡勇, 丁雨田, 陈大林, 陈韩锋. SLM成形Inconel 738合金缺陷的演变及形成机理[J]. 材料导报, 2022, 36(13): 21040269-7.
[15] 马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed