Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20100255-8    https://doi.org/10.11896/cldb.20100255
  金属与金属基复合材料 |
块体非晶合金的低温性能研究进展
王顺平1,2, 李春燕1,2,*, 李金玲2, 王海博2, 寇生中1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Research Progress on Cryogenic Temperature Properties of Bulk Amorphous Alloys
WANG Shunping1,2, LI Chunyan1,2,*, LI Jinling2, WANG Haibo2, KOU Shengzhong1,2
1 State Key Laboratory of Advanced Processing and Reuse of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 15499KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非晶合金的结构与性能在极端条件下会发生大的改变,且其变形机理目前尚不统一。为了明确低温极端条件对块体非晶合金力学性能的影响机制,本文综述了块体非晶合金在低温条件下微观形貌、力学性能的变化。主要阐述了低温对其拉伸与压缩力学性能的影响,列举了块体非晶合金在低温下具有高屈服强度等优异的力学性能,如低温下块体非晶合金的屈服强度可达2 217 MPa。此外,还评述了块体非晶合金在不同低温条件下电性能和磁性能的变化,发现块体非晶合金在磁制冷方面也有突出的表现,比如Co45Er55和Co35Er65两种块体非晶合金从铁磁到顺磁的转变温度分别为26 K和15 K。根据热力学麦克斯韦关系可确定块体非晶合金的磁熵变值,当Er元素浓度增加时,磁熵变值会减小。在5 T的磁场下,Co45Er55和Co35Er65的磁熵变峰值分别约为10.8 J·kg-1·K-1和9.8 J·kg-1·K-1,这说明Co35Er65合金更有望成为磁制冷的候选材料。本文对进一步理解块体非晶合金低温下微观形貌与力学性能的关联具有重要意义,为块体非晶合金在极端低温条件下的应用提供了理论基础,对推动块体非晶合金这一新型材料的工程化应用有重要的理论和实际意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王顺平
李春燕
李金玲
王海博
寇生中
关键词:  非晶合金  低温  微观形貌  力学性能    
Abstract: The structure and properties of amorphous alloys undergo significant changes under extreme conditions, and the deformation mechanism is not uniform. This paper reviews the changes in the microscopic morphology and mechanical properties of bulk amorphous alloys at extreme cryogenic conditions to clarify the thermal effects on the mechanical properties of amorphous alloys. It mainly elaborates the influence of cryogenic temperature on tensile and compressive mechanical properties for bulk amorphous alloys and lists the excellent mechanical properties of bulk amorphous alloys at cryogenic temperatures, such as a high yield strength of 2 217 MPa. In addition, the electrical and magnetic properties of bulk amorphous alloys under different cryogenic temperature conditions are also reviewed, and it is found that bulk amorphous alloys also have outstanding performance in magnetic refrigeration. For example, the transition temperatures from ferromagnetic to paramagnetic for Co45Er55 and Co35Er65 are 26 K and 15 K, respectively. The change in magnetic entropy is determined according to the thermodynamic Maxwell relationship. With an increase in Er concentration, the magnetic entropy change value also decreases. Under a magnetic field of 5 T, the magnetic entropy change peaks of Co45Er55 and Co35Er65 are about 10.8 J·kg-1·K-1and 9.8 J·kg-1·K-1, respectively, indicating that the Co35Er65 alloy is more likely to be a candidate for magnetic refrigeration. The discussion in this paper is of great significance in further understanding the relationship between microscopic morphology and mechanical properties of amorphous alloys at cryogenic temperatures, and provides a theoretical basis for the application of bulk amorphous alloys under extreme cryogenic temperature conditions, which shows important theoretical and practical significance for engineering applications of bulk amorphous alloys as new materials as well.
Key words:  amorphous alloys    cryogenic temperature    micromorphology    mechanical properties
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TG139  
基金资助: 国家自然科学基金(51861021;51661016);兰州理工大学红柳一级学科建设计划资助
通讯作者:  * licywz@163.com   
作者简介:  王顺平,2018年6月毕业于北华大学,获得材料物理专业学士学位。现为兰州理工大学硕士研究生,在李春燕教授的指导下进行研究。目前主要研究领域为Zr基块体非晶合金。
李春燕,兰州理工大学材料学院教授、硕士研究生导师。2006年获得兰州理工大学材料学专业硕士学位并留校任教,2013年获得兰州理工大学材料加工工程专业博士学位。2019年获得“西部地区人才培养特别项目”出国访学资助。中国材料研究学会高级会员,甘肃省材料学会会员,《精密成形工程》期刊编委。Applied Surface Science、Rare Metals、Journal of Non-Crystalline Solids、Physics B等国际权威期刊审稿人。长期从事非晶合金、高熵合金等相关领域的研究。近年来,在非晶合金和高熵合金领域发表论文50余篇,包括Intermetallics、Journal of Materials Science、Journal of Non-Crystalline Solids、Surface Engineering、Progress in Nature Science等。申请国家发明专利10项。
引用本文:    
王顺平, 李春燕, 李金玲, 王海博, 寇生中. 块体非晶合金的低温性能研究进展[J]. 材料导报, 2022, 36(13): 20100255-8.
WANG Shunping, LI Chunyan, LI Jinling, WANG Haibo, KOU Shengzhong. Research Progress on Cryogenic Temperature Properties of Bulk Amorphous Alloys. Materials Reports, 2022, 36(13): 20100255-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100255  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20100255
1 Chen A H, Yu J G, Chen G P, et al. Materials Reports, 2019, 33(Z2), 415 (in Chinese).
陈爱华, 俞坚刚, 陈国平, 等. 材料导报, 2019, 33(Z2), 415.
2 Wang W H, Dong C, Shek C H, et al. Materials Science and Enginee-ring: R: Reports, 2004, 44(2-3), 45.
3 Han J J, Wang C P, Kou S Z, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(1), 148.
4 Obeydavi A, Shafyei A, Rezaeian A, et al. Journal of Non-Crystalline Solids, 2020, 527, 119718.
5 Shi H Q, Zhao W B, Wei X W, et al. Journal of Alloys and Compounds, 2020, 815, 152636.
6 Yin G, Li F W, Deng L, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(3), 530 (in Chinese).
殷更, 李方伟, 邓磊, 等.中国有色金属学报, 2020, 30(3), 530.
7 Ashby M, Greer A. Scripta Materialia, 2006, 54(3), 321.
8 Zhang L, Zhan Z L, Li L. Material & Heat Treatment, 2008, 37(16), 103 (in Chinese).
张玲, 詹肇麟, 李莉.材料热处理技术, 2008, 37(16), 103.
9 Hufnagel T C, Schuh C A, Falk M L. Acta Materialia, 2016, 109, 375.
10 Telford M. Materials Today, 2004, 7(1369), 36.
11 Williams J C, Starke J, Edgar A. Acta Materialia, 2003, 51(19), 5775.
12 Kawashima A, Zeng Y Q, Xie G Q, et al. Materials Science and Engineering: A, 2010, 528(1), 391.
13 Chang H J, Kim D H, Kim Y M, et al. Scripta Materialia, 2006, 55(6), 509.
14 Wanga K, Fujita T, Zeng Y Q, et al. Acta Materialia, 2008, 56(12), 2834.
15 Chen L Y, Setyawan A D, Kato H, et al. Scripta Materialia, 2008, 59(1), 75.
16 Li X C, Liu J T. The Journal of Light Scattering, 2017, 29(4), 320 (in Chinese).
李香春, 刘金涛. 光散射学报, 2017, 29(4), 320.
17 Dong J, Wang Y T, Hu J, et al. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2), 379(in Chinese).
董杰, 王雨田, 胡晶, 等.力学学报, 2020, 52(2), 379.
18 Li L, Wei B C, Zhang T H, et al. Rare Metal Materials and Engineering, 2008, 37(4), 725 (in Chinese).
李磊, 魏炳忱, 张泰华, 等. 稀有金属材料与工程, 2008, 37(4), 725.
19 Zhang Y, GreerA L. Journal of Alloys and Compounds, 2007, 2, 434.
20 Minga K, Lu W J, Li Z M, et al. Acta Materialia, 2020, 188, 354.
21 Bengus V, Tabachnikova E, Verkin B, et al. Scripta Materialia, 1996, 35(6), 781.
22 Li H Q, Fan C, Tao K X, et al. Advanced Materials, 2006, 18(6), 752.
23 Fan C, Li H, Kecskes L J, et al. Physical Review Letters, 2006, 96(14), 145506.
24 Sun Y J, Zhai Y H. Heat Treatment of Metals, 2016, 41(10), 25 (in Chinese).
孙亚娟, 翟延慧. 金属热处理, 2016, 41(10), 25.
25 Huang Y J, Shen J, Sun J F, et al. Materials Science and Engineering: A, 2008, 498(1-2), 203.
26 Huo L S, Bai H Y, Xi X K, et al. Journal of Non-Crystalline Solids, 2011, 357(16-17), 3088.
27 Wua S J, Qua R T, Wang X D, et al. Materials Science & Engineering A, 2019, 768, 138453.
28 Li Y H, Zhang W, Dong C, et al. Materials Science & Engineering A, 2013, 584, 7.
29 Yao J, Li J S, Ma W F, et al. The Chinese Journal of Nonferrous Metals, 2009, 19(8), 1443 (in Chinese).
姚健, 李金山, 马卫锋, 等. 中国有色金属学报, 2009, 19(8), 1443.
30 Li L Y, Li J S, He Y X, et al. Journal of Non-Crystalline Solids, 2020, 542, 120105.
31 Wright W J, Schwarz R B, Nix W D. Materials Science and Engineering: A, 2001, 229, 319.
32 Frans S. Acta Materialia, 1976, 25, 407.
33 Zhang Z F, Eckert J, Schultz L. Acta Materialia, 2003, 51(4), 1167.
34 Donovan P E, Stobbs W M. Acta Materialia, 1981, 29(8), 1419.
35 Cheng H W, Guang W, Xue Y F,et al. Transaction of Beijing Institute of Technology, 2013, 33(11), 1203(in Chinese).
程焕武, 广文, 薛云飞, 等. 北京理工大学学报, 2013, 33(11), 1203.
36 Kawashima A, Yokoyama Y, Seki I, et al. Materials Transactions, 2009, 50(11), 2685.
37 Zhang Z F, He G, Eckert J, et al. Physical Review Letters, 2003, 91(4), 1.
38 Qiao J W, Liaw P K, Zhang Y. Scripta Materialia, 2011, 64(5), 462.
39 Li L Y, Li J S, Wang J, et al. Materials Science & Engineering A, 2017, 694, 93.
40 Cheng J L, Chen G, Liu C T, et al. Scientific Reports, 2013, 3, 2097.
41 Qu R T, Zhang Z F. Scientific Reports, 2013, 3, 1117.
42 Wang W H. Progress in Materials Science, 2012, 57(3), 487.
43 Raghavan R, Murali P, Ramamurty U. Acta Materialia, 2009, 57(11), 3332.
44 Subhash G, Dowding R J, Kecskes L J. Materials Science and Enginee-ring A, 2002, 334(1-2), 33.
45 Zhang J, Park J M, Kim D H, et al. Materials Science and Engineering: A, 2007, 290, 449.
46 Yoon K S, Lee M, Fleury E, et al. Acta Materialia, 2010, 58(16), 5295.
47 Qiao J W, Jia H L, Chuang C P, et al. Scripta Materialia, 2010, 63(8), 871.
48 Yang B, Liu C T, Nieh T G, et al. Journal of Materials Research, 2006, 21(4), 915.
49 Wang Y S, Gao S B, Zhang L, et al. Intermetallics, 2018, 93, 360.
50 Ivasishin O M, Markovsky P E, Pakharenko G A, et al. Materials Science and Engineering A, 1995,196(1-2), 65.
51 Huo J T, Sheng W, Wang J Q. Acta Physica Sinica, 2017, 66(17), 176409(in Chinese).
霍军涛, 盛威, 王军强. 物理学报, 2017, 66(17), 176409.
52 Boutahar A, Lassri H, Hlil E K. Journal of Superconductivity and Novel Magnetism, 2014, 27(12), 2865.
53 Liu B B, Ye F. Intermetallics, 2016, 75, 31.
54 Lei S, Sun J, Wu Y B, et al. Ordnance Material Science and Enginee-ring, 2019, 42(4), 72 (in Chinese).
雷声, 孙军, 吴彦博, 等. 兵器材料科学与工程, 2019, 42(4), 72.
55 Okaia D, Fukami T, Yamasaki T, et al. Materials Science and Enginee-ring A, 2004, 364,375.
[1] 赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
[2] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[3] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[4] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[5] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[6] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[7] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[8] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[9] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[10] 胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 21120217-5.
[11] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[12] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[13] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[14] 李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
[15] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed