Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22010063-6    https://doi.org/10.11896/cldb.22010063
  金属与金属基复合材料 |
一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响
李少鹏, 王德芳, 谢文玲*, 李秀兰, 李轩
四川轻化工大学机械工程学院,四川 自贡 643000
Effect of Reaction Time of One-step on Corrosion Resistance of Superhydrophobic Coatings on AZ91 Magnesium Alloys
LI Shaopeng, WANG Defang, XIE Wenling*, LI Xiulan, Li Xuan
College of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, China
下载:  全 文 ( PDF ) ( 5147KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用硬脂酸乙醇和硫酸锌溶液,采用一步法(水热刻蚀和修饰结合)在AZ91镁合金表面制备了超疏水涂层,研究了反应时间对其疏水性和耐腐蚀性的影响。用X射线光电子衍射仪(XRD)、傅里叶转换红外射线(FTIR)、扫描电子显微镜(SEM)及EDS谱图分析涂层的相组成和微观形貌,利用接触角和极化曲线测试其疏水性和耐腐蚀性。随反应时间延长,涂层的接触角先增大再减小,其中反应7 h制备的涂层接触角达到最大值154.2°,为超疏水涂层,其腐蚀电流密度最低,较镁合金基体下降了3个数量级,阻抗较镁合金基体提高了5个数量级,耐腐蚀性显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李少鹏
王德芳
谢文玲
李秀兰
李轩
关键词:  AZ91镁合金  超疏水涂层  一步法  耐腐蚀性    
Abstract: One-step method combined hydrothermal etching and modification using stearic acid ethanol and zinc sulfate solution was used to prepare superhydrophobic coatings on the AZ91 magnesium alloys. The effect of reaction times of the one-step method on hydrophobicity and corrosion resistance of superhydrophobic coatings was studied. The phase composition and microstructure of coatings were analyzed by X-ray photoelectron diffractometer (XRD), Fourier transform infrared ray (FTIR), scanning electron microscope (SEM) and EDS spectrum. And the hydrophobicity and corrosion resistance were characterized by contact angle and polarization curve. With the increase of reaction time, the contact angles of the coatings first increased and then decreased. The coating prepared with 7 h of action time had the maximum contact angles of 154.2°, which was a superhydrophobic coating, and the coated sample had the lowest corrosion current density and the biggest impedance, which was 3 orders of magnitude lower and 5 orders of magnitude higher than those of uncoated magnesium alloy matrix, respectively. So, the corrosion resistance of the magnesium alloy was significantly improved.
Key words:  AZ91 magnesium alloy    superhydrophobic coating    one-step process    corrosion resistance
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TG178  
基金资助: 过程装备与控制工程四川省高校重点实验室项目(GK202011);大学生创新创业项目(cx2020176)
通讯作者:  *谢文玲,四川轻化工大学机械工程学院副教授、研究研究生导师。2000年西华大学塑性成形工艺与设备专业本科毕业后到四川轻化工大学工作至今,2007年四川大学材料加工工程专业硕士毕业,2022年西南大学化学(洁净能源科学)专业博士毕业。目前主要从事金属表面改性、金属材料相变等方面的研究工作。发表论文20余篇,包括Surface & Coatings Technology,Vacuum,《金属热处理》《铸造技术》《热加工工艺》等,授权国家发明专利5项。zsyxwl@126.com   
作者简介:  李少鹏,2015年6月于山西大同大学获得工学学士学位。现为四川轻化工大学机械工程学院研究生,目前主要研究领域为镁合金表面防护涂层。
引用本文:    
李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
LI Shaopeng, WANG Defang, XIE Wenling, LI Xiulan, Li Xuan. Effect of Reaction Time of One-step on Corrosion Resistance of Superhydrophobic Coatings on AZ91 Magnesium Alloys. Materials Reports, 2023, 37(18): 22010063-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010063  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22010063
1 Kubásek J, Minárik P, Hosová K, et al. Journal of Alloys and Compounds, 2021, 877, 160089.
2 Feliu Jr S, Galván J C, Pardo A, et al. The Open Corrosion Journal, 2010, 3(1), 80.
3 Liu S, Li Z, Yu Q, et al. Chemical Engineering Journal, 2021, 424, 130551.
4 Zou Y, Wang Y, Xu S, et al. Chemical Engineering Journal, 2019, 362, 638.
5 Wang Z, Su Y, Li Q, et al. Materials Characterization, 2015, 99, 200.
6 Wang L, Yang J, Zhu Y, et al. Materials Letters, 2016, 171, 297.
7 Zheng T, Hu Y, Zhang Y, et al. Journal of Colloid and Interface Science, 2017, 505, 87.
8 Wan H, Hu X. Materials Letters, 2016, 174, 209.
9 Li J, Liu Q, Wang Y, et al. Journal of the Electrochemical Society, 2016, 163(5), C213.
10 Li Y, Dai S, John J, et al. ACS Applied Materials & Interfaces, 2013, 5(21), 11066.
11 Guo Z, Liu W, Su B L. Journal of Colloid and Interface Science, 2011, 353(2), 335.
12 Qian H C, Li H Y, Zhang D W. Surface Technology, 2015 (3), 15 (in Chinese).
钱鸿昌, 李海扬, 张达威. 表面技术, 2015 (3), 15.
13 Çamurlu H E, Mathur S, Arslan O, et al. Ceramics International, 2016, 42(5), 6312.
14 Gunasekaran S, Natarajan R K, Kala A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(2), 323.
15 Ng W F, Wong M H, Cheng F T. Surface and Coatings Technology, 2010, 204(11), 1823.
16 Sun X D, Liu G, Li L Y. Chinese Journal of Materials Research, 2015, 29(7), 523 (in Chinese).
孙小东, 刘刚, 李龙阳. 材料研究学报, 2015, 29(7), 523.
17 Sundaraganesan N, Joshua B D. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(3), 771.
18 Xue H X, Li J P, Xu Z Q, et al. Journal of Fuel Chemistry and Techno-logy, 2009, 37(6), 747 (in Chinese).
薛海霞, 李军平, 许振芹, 等. 燃料化学学报, 2009, 37(6), 747.
19 Li H Y, Tang Y X, Xu Z Q. Chinese Journal of Lasers, 2006, 33(1), 116 (in Chinese).
李海元, 唐永兴. 中国激光, 2006, 33(1), 116.
20 Zhang Y, Zhu H, Zhuang C, et al. Materials Chemistry and Physics, 2016, 179, 80.
21 Li M, Wang L, Li D, et al. Carbohydrate Polymers, 2014, 102, 136.
22 Wang Q, Han S L, Guo F, et al. Journal of Fuel Chemistry and Techno-logy, 2019, (3), 340 (in Chinese).
王茜, 韩素立, 郭峰, 等. 摩擦学学报, 2019 (3), 340.
23 Whyman G, Bormashenko E, Stein T. Chemical Physics Letters, 2008, 450(4-6), 355.
24 Fini M H, Amadeh A. Transactions of Nonferrous Metals Society of China, 2013, 23(10), 2914.
25 Yu D, Tian J. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445, 75.
26 Ouyang X, Qiu X, Lou H, et al. Industrial & Engineering Chemistry Research, 2006, 45(16), 5716.
27 Zhang K, Wen B W, Tan Y. Corrosion Science and Protection Technology, 2018, 30(4), 441 (in Chinese).
张凯, 文邦伟, 谭勇. 腐蚀科学与防护技术, 2018, 30(4), 441.
28 Floyd F L, Avudaiappan S, Gibson J, et al. Progress in Organic Coa-tings, 2009, 66(1), 8.
29 Chu J H, Tong L B, Jiang Z H. Surface Technology, 2019, 48(3), 62 (in Chinese).
楚景慧, 佟立波, 江忠浩. 表面技术, 2019, 48(3), 62.
30 Liu Y, Yin X, Zhang J, et al. Electrochimica Acta, 2014, 125, 395.
31 Zhong Y, Hu J, Zhang Y, et al. Applied Surface Science, 2018, 427, 1193.
32 Zhao H, Cai S, Ding Z, et al. RSC Advances, 2015, 5(31), 24586.
33 Ranganatha S, Venkatesha T V, Vathsala K. Applied Surface Science, 2010, 256(24), 7377.
34 Zhao B F, Zou D N, Tong L B. Surface Technology, 2021, 50(10), 322 (in Chinese).
赵碧芳, 邹德宁, 佟立波. 表面技术, 2021, 50(10), 322.
35 López-Ortega A, Bayón R, Arana J L. Surface and Coatings Technology, 2018, 349, 1083.
[1] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[2] 赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
[3] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[4] 罗圆, 王献, 赵君, 胡昌义, 张大伟, 魏燕, 张诩翔, 蔡宏中. Pt-Co-Mn合金组织结构及性能研究[J]. 材料导报, 2023, 37(10): 21060215-5.
[5] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[6] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[7] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[8] 刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
[9] 胡勇, 刘飞, 刘员员, 赵龙志, 焦海涛, 唐延川, 刘德佳. AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的组织和耐腐蚀性研究[J]. 材料导报, 2022, 36(14): 22010093-6.
[10] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[11] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[12] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[13] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[14] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[15] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed