Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090216-8    https://doi.org/10.11896/cldb.21090216
  高分子与聚合物基复合材料 |
PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用
包亚晴1, 黄李金鸿2, 李新冬1, 黄彪林3, 黄万抚3,*
1 江西理工大学土木与测绘工程学院,江西 赣州 341000
2 江西理工大学建筑与设计工程学院,江西 赣州 341000
3 江西理工大学资源与环境工程学院,江西 赣州 341000
Preparation of Positively Charged Nanofiltration Membrane Regulated by PDA Interlayer and Its Application in Water Treatment
BAO Yaqing1, HUANG Lijinhong2, LI Xindong1, HUANG Biaolin3, HUANG Wanfu3,*
1 School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
2 School of Architecture and Design Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
3 School of Resource and Environmental Engineering,Jiangxi Unviersity of Science and Technology,Ganzhou 341000, Jiangxi, China
下载:  全 文 ( PDF ) ( 10294KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当前商用纳滤膜在溶液中多显示荷负电,而根据道南效应,荷正电纳滤膜在分离废水中的荷正电物质时更具优势。本工作在掺杂金属有机骨架(MOF)的混合基质基膜上构建聚多巴胺(PDA)中间层,再通过聚乙烯亚胺(PEI)和均苯三甲酰氯(TMC)的交联反应制备了荷正电聚酰胺复合纳滤膜。对多巴胺(DA)沉积浓度和时间及TMC有机相的添加条件进行优化;对比了PDA中间层添加前后两种复合纳滤膜对1 g/L的MgCl2、NaCl、MgSO4、Na2SO4溶液的渗透截留情况;重点考察了改性膜对含Cu2+、Ni2+和Pb2+的重金属溶液及五种阴阳离子染料的处理情况,最后评估了膜的耐污染性能。结果表明,将2 g/L的DA在超滤支撑层上沉积90 min,PEI水相浓度为1.2%、浸没时间为7 min、TMC有机相浓度为0.5%、交联时间为120 s时,所制备的改性膜的综合性能最佳,膜的接触角为51.5°,表面粗糙度下降,等电点在pH为9左右,在溶液中显示荷正电。改性膜对MgCl2的截留率上升到94.26%,在0.8 MPa下,其对Cu2+、Ni2+、Pb2+溶液的水通量均在40 L/(m2·h)以上,且离子截留率分别为96.57%、95.23%、94.73%;同时,其对几种染料的截留率均能达到90%以上。因此,PDA中间层改性的荷正电纳滤膜在废水处理中具有良好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
包亚晴
黄李金鸿
李新冬
黄彪林
黄万抚
关键词:  聚多巴胺(PDA)  聚乙烯亚胺(PEI)  荷正电纳滤膜  重金属  染料    
Abstract: At present, most commercial nanofiltration membranes show negative charge in solution, while according to the Donnan effect, positively charged nanofiltration membranes have more advantages in separating positively charged substances in wastewater. In this work, polydopamine (PDA) interlayer was constructed on MOF doped mixed matrix base membrane, and then positively charged polyamide composite nanofiltration membrane was prepared by crosslinking reaction of polyethyleneimine (PEI) and homobenzoyl chloride (TMC). The concentration and time of dopamine (DA) deposition and the addition conditions of TMC organic phase were optimized; the permeation and interception of 1 g/L MgCl2, NaCl, MgSO4 and Na2SO4 solutions by two kinds of composite nanofiltration membranes before and after the addition of PDA interlayer were compared; the treatment of heavy metal solutions containing Cu2+, Ni2+ and Pb2+ and five anionic and ionic dyes by the modified membrane was investigated. Finally, the pollution resistance of the membrane was evaluated. The results showed that when 2 g/L DA was deposited on the ultrafiltration support layer for 90 min, the concentration of PEI aqueous phase was 1.2%, immersion time was 7 min, the concentration of TMC organic phase was 0.5% and crosslinking time was 120 s, the comprehensive performance of the modified membrane was the best. At this time, the hydrophilicity of the modified membrane was improved, the contact angle was 51.5°, the surface roughness of the membrane decreased, and its isoelectric point is about pH=9, showed positive charge in general solution.The retention rate of MgCl2 by the modified membrane increased to 94.26%. At 0.8 MPa, the water flux to Cu2+, Ni2+ and Pb2+ solutions was more than 40 L/(m2·h), and the ion retention rates were 96.57%, 95.23% and 94.73% respectively. At the same time, the rejection rate of several dyes can reach more than 90%. Therefore, the positively charged nanofiltration membrane modified by PDA interlayer has a good application prospect in wastewater.
Key words:  polydopamine (PDA)    polyethyleneimine (PEI)    positively charged nanofiltration membrane    heavy metals    dyes
发布日期:  2023-03-27
ZTFLH:  TQ028.8  
基金资助: 国家自然科学基金(51864017;41662004)
通讯作者:  *黄万抚,南昌大学和江西理工大学博士研究生导师,二级教授、博士(后),享受国务院政府特殊津贴专家。研究方向为膜分离、矿物加工和废水处理技术。1983年在中南矿冶学院获得工学学士学位,1988在南方冶金学院获得工学硕士学位,1999年在北京科技大学获得工学博士学位。澳大利亚科廷大学访问学者,清华大学高级访问学者。主持科研项目88项,发表论文160余篇,出版学术专著1部。Sim2008@sina.com   
作者简介:  包亚晴,2019年7月毕业于安徽工程大学,获得工学学士学位,2019年9月至今在江西理工大学攻读工程硕士学位,研究方向为膜分离技术。
引用本文:    
包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
BAO Yaqing, HUANG Lijinhong, LI Xindong, HUANG Biaolin, HUANG Wanfu. Preparation of Positively Charged Nanofiltration Membrane Regulated by PDA Interlayer and Its Application in Water Treatment. Materials Reports, 2023, 37(6): 21090216-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090216  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21090216
1 Wang J, Yu W, Graham N J D, et al. Chemical Engineering Journal, 2020, 392, 123769.
2 Qi Y, Zhu L, Shen X, et al. Separation and Purification Technology, 2019, 222, 117.
3 Lin C E, Fang L F, Du S Y, et al. Separation and Purification Technology, 2019, 212, 101.
4 Ma M Q, Zhang C, Zhu C Y, et al. Journal of Membrane Science, 2019, 591, 117316.
5 Qin D, Huang G, Terada D, et al. Journal of Membrane Science, 2020, 603, 118003.
6 Yao Z C, Xiao F K, Liu Z F, et al. Materials Reports, 2021, 35(8), 8196(in Chinese).
姚子成, 肖方锟, 刘兆峰, 等. 材料导报, 2021, 35(8), 8196.
7 Dai R, Li J, Wang Z. Advances in Colloid and Interface Science, 2020, 282, 102204.
8 Cheng C, Li P, Shen K, et al. Journal of Membrane Science, 2018, 553, 70.
9 Zhou Z, Hu Y, Boo C, et al. Environmental Science & Technology Letters, 2018, 5(5), 243.
10 Yang Y, Li X, Shen L, et al. RSC Advances, 2017, 7(29), 18001.
11 Karan S, Jing Z, Livingston A G. Science, 2015, 348(6241), 1347.
12 Zhu Y, Dou P, He H, et al. Separation and Purification Technology, 2020, 239, 116528.
13 Gao Y B, Wu L P, Gai J G. Polymer Materials Science & Engineering, 2019, 35(5), 164(in Chinese).
高钰冰, 伍丽萍, 盖景刚. 高分子材料科学与工程, 2019, 35(5), 164.
14 Yang Z, Wang F, Guo H, et al. Environmental Science & Technology, 2020, 54(18), 11611.
15 Ma G X, Yang L, Wang T J. Chemical Industry and Engineering Progress, 2021, 40(12), 6729(in Chinese).
马冠香, 杨令, 王亭杰. 化工进展, 2021, 40(12), 6729.
16 Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849), 426.
17 Wait J H. Nature Materials, 2008, 7(1), 8.
18 Mohammadnezhad F, Feyzi M, Zinadini S. Journal of Industrial and Engineering Chemistry, 2019, 71, 99.
19 Li P, Thankamony R L, Li X, et al. Journal of Membrane Science, 2021, 119507.
20 Yan H C. Surface and interface engineering of polymermembranes via polydopamine/polyethyleneimine co-deposition. Ph. D. Thesis, Zhejiang University, China, 2017(in Chinese).
杨皓程. 基于聚多巴胺/聚乙烯亚胺共沉积技术的聚合物膜表界面工程. 博士学位论文, 浙江大学, 2017.
21 Li H, Peng L, Luo Y, et al. RSC Advances, 2015, 5(119), 98566.
22 Xi Z Y, Xu Y Y, Zhu L P, et al. Journal of Membrane Science, 2009, 327(1-2), 244.
23 Tang A Q, Lu J Y, Feng W L, et al. Acta polymerica sinica, 2018, (12), 1524(in Chinese).
唐安琪, 路景驭, 冯炜林, 等. 高分子学报, 2018(12), 1524.
24 Ding J, Wu H, Wu P. Chemical Engineering Journal, 2020, 396, 125199.
25 Shah A A, Park A, Yoo Y, et al. Journal of Membrane Science, 2021, 627, 119209.
26 Yang Y, Song C, Wang P, et al. Chemosphere, 2022, 291, 132744.
27 Fang C, Sun J, Zhang B, et al. Journal of Colloid and Interface Science, 2018, 531, 168.
28 Ding J, Wu H, Wu P. Journal of Membrane Science, 2020, 598, 117658.
29 Kang Y, Obaid M, Jang J, et al. Desalination, 2019, 470, 114125.
30 Rho H, Chon K, Cho J. Desalination, 2018, 427, 19.
31 Lin C E, Fang L F, Du S Y, et al. Separation and Purification Technology, 2019, 212, 101.
32 Zhu Z X. Membrane Science and Technology, 2020, 40(3), 1(in Chinese).
祝振鑫. 膜科学与技术, 2020, 40(3), 1.
33 Liu M M, Mo H L, Chen Y L, et al. Membrane Science and Technology, 2021, 41(1), 116(in Chinese).
刘曼曼, 莫恒亮, 陈亦力, 等. 膜科学与技术, 2021, 41(1), 116.
34 Oren Y S, Freger V, Nir O. Journal of Membrane Science, 2022, 643, 643.
35 Xiao Y H, Xu H J, Zhao C Y. International Communications in Heat and Mass Transfer, 2021, 126, 105396.
36 Shang W, Li X, Liu W, et al. Journal of Membrane Science, 2021, 622, 119021.
37 Li Y, Luo J, Wan Y. Journal of Membrane Science, 2020, 612, 118432.
38 Wang P, Wang F, Jiang H, et al. Water Research, 2020, 175, 115649.
[1] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[2] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[3] 黄飞, 马亿珠, 勾密峰. 固化垃圾焚烧飞灰的矿渣用作矿物掺合料及其安全性分析[J]. 材料导报, 2022, 36(Z1): 21100081-5.
[4] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[5] 杨振清, 项文丽, 矫玉秋, 王郭晨, 于月宁, 徐慧英, 邵长金. 均相光催化制氢体系有机染料光敏剂的研究进展[J]. 材料导报, 2022, 36(24): 20100177-15.
[6] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[7] 裴烈飞, 张香云, 袁子洲. 非晶态合金在废水处理中的催化性能[J]. 材料导报, 2022, 36(2): 20080033-9.
[8] 师晓凤, 马应霞, 李鑫, 康小雅, 李晓华, 杨海军. 静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展[J]. 材料导报, 2022, 36(18): 20090131-9.
[9] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[10] 刘小林, 张勇, 张林, 罗炫. Cu2O-CuO/TiO2复合壳聚糖/马来酸酐/二乙烯基苯的制备及吸附-降解染料性能研究[J]. 材料导报, 2022, 36(1): 20100124-6.
[11] 孙毅, 李梦晗, 王超, 韩毅, 李国栋. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(z2): 101-106.
[12] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[13] 袁清堂, 于艳敏, 宋旭锋. 基于YD2-o-C8的高效卟啉染料敏化剂的研究进展[J]. 材料导报, 2021, 35(9): 9210-9217.
[14] 张诗洋, 朋小康, 廖松义, 闵永刚. 用于分离重金属离子的聚苯胺改性氧化石墨烯复合膜[J]. 材料导报, 2021, 35(18): 18030-18034.
[15] 谢艳新, 杨倩, 陈雅仙, 陈改荣, 朱宝库, 章鹏. 新型荷正电PVC微滤膜的制备及去除Cr(Ⅵ)性能[J]. 材料导报, 2021, 35(16): 16184-16189.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed