Rapid Detection of Hg2+ by a Ratiometric Fluorescence Sensing Method Based on Gold Nanoclusters and Carbon Quantum Dots
LIU Feiyan1,2, ZHAO Shengliang1,2, LAI Xuandi3, LU Zhiyang1,2, LI Linfeng1,2, HAN Peigang1,2,*, CHEN Liqiong2,3,*
1 College of Applied Sciences, Shenzhen University, Shenzhen 518061, Guangdong, China 2 College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, China 3 Analysis and Testing Center, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
Abstract: Mercury ion (Hg2+) is a contaminant of strong carcinogenicity, non-biodegradability and hypertoxicity, thus it is significant to design a rapid detection method of Hg2+ to protect the human health and earth environment. In this work, a radiometric fluorescence sensor, via a single excitation wavelength and dual emission wavelength, was developed by mixing gold nanoclusters (AuNCs) and carbon quantum dots (CDs) for rapid naked-eye screening and detection of Hg2+, where the AuNCs with red fluorescence were prepared by hydrothermal synthesis method, and the CDs with blue fluorescence were prepared by microwave-assistant method with high quantum yield (85%). Based on the high-affinity metallophilic Hg2+-Au+ interactions, the fluorescence emission peak of AuNCs at 670 nm could be quenched significantly, while the reference fluorescence intensity of CDs at 420 nm was basically not affected by Hg2+in AuNCs-CDs. There is a linear relationship between the ratiometric fluorescence signal (I670/I420) of AuNCs-CDs and the concentration of Hg2+ (0.005—1 mg·L-1) with the limit of detection of 1.5 μg·L-1. As the concentration of Hg2+ rising, the fluorescence color of AuNCs-CDs could be distinguished by bare-eyes (from pink to blue) under UV lights. This developed method was not only anti-interferential to other metal ions, but also feasible in the detection of actual samples, such as river water, rice and cabbage, with the recovery rate of Hg2+ in the range of 84.5%—105.1%. Therefore, AuNCs-CDs can be used to construct an ideal ratiometric fluorescent sensor for the rapid and sensitive detection of Hg2+ to the further applications on the food safety and environmental detection.
作者简介: 刘飞燕,2014年6月、2017年6月、2020年6月分别于广东海洋大学、湖南师范大学、华南理工大学获得工学学士、医学硕士、工学博士学位。现为深圳大学和深圳技术大学联合培养的博士后,导师为陈丽琼教授和韩培刚教授。目前主要从事纳米材料在光学传感快速检测方法中的研究。已获授权发明专利1项,发表SCI论文8篇,EI论文1篇,包括Journal of Hazardous Materials、Food chemistry等。
引用本文:
刘飞燕, 赵笙良, 赖璇迪, 陆志扬, 李霖峰, 韩培刚, 陈丽琼. 基于金纳米簇和碳量子点的比率荧光传感法快速检测Hg2+[J]. 材料导报, 2023, 37(21): 22070224-8.
LIU Feiyan, ZHAO Shengliang, LAI Xuandi, LU Zhiyang, LI Linfeng, HAN Peigang, CHEN Liqiong. Rapid Detection of Hg2+ by a Ratiometric Fluorescence Sensing Method Based on Gold Nanoclusters and Carbon Quantum Dots. Materials Reports, 2023, 37(21): 22070224-8.
1 Yang J J, Wang F L, Yuan H Q, et al. Nanoscale, 2019, 11 (39), 17967. 2 Liu M X, Tang F L, Yang Z L, et al. Journal of Analytical Methods in Chemistry, 2019, 2019, 1095148. 3 Xu J, Li J, Zhong W, et al. Chinese Chemical Letters, 2021, 32 (8), 2390. 4 Shang L, Xu J, Nienhaus G U. Nano Today, 2019, 28, 100767. 5 Bai Y L, Shu T, Su L, et al. Crystals, 2020, 10 (5), 357. 6 El-Sayed N, Schneider M. Journal of Materials Chemistry B, 2020, 8 (39), 8952. 7 Ju Y J, Li N, Liu S G, et al. Sensors and Actuators B-Chemical, 2018, 275, 244. 8 Pan U N, Sanpui P, Paul A, et al. ACS Applied Bio Materials, 2019, 2 (8), 3144. 9 Niu Q Q, Gao P F, Yuan M J, et al. Microchemical Journal, 2019, 146, 1140. 10 Zhang S, Zhang D, Zhang X, et al. Analytical Chemistry, 2017, 89 (6), 3538. 11 Agarwalla H, Mahajan P S, Sahu D, et al. Inorganic Chemistry, 2016, 55 (22), 12052. 12 Yu C H. Analytical Sciences, 2021, 37 (8), 1181. 13 Wang Y, Zhu A L, Fang Y Y, et al. Journal of Environmental Sciences, 2022, 115, 403. 14 Spearman S, Bartrem C, Sharshenova A A, et al. Applied Sciences-Basel, 2022, 12 (4), 1943. 15 Lu Z W, Li J, Ruan K, et al. Chemical Engineering Journal, 2022, 435, 134979. 16 Li W J, Liu D, Bi X Y, et al. Sensors and Actuators A-Physical, 2020, 302, 111794. 17 Thakur N S, Mandal N, Banerjee U C. ACS Omega, 2018, 3 (12), 18553. 18 Gao X, Ma Z Y, Sun M J, et al. Food Chemistry, 2022, 369, 130964. 19 Xie H, Dong J, Duan J, et al. Sensors and Actuators B-Chemical, 2018, 259, 1082. 20 Wang J, Qiu Y, Li D, et al. Microchimica Acta, 2019, 186 (12), 809. 21 Schwenke A M, Hoeppener S, Schubert U S. Advanced Materials, 2015, 27 (28), 4113. 22 El-Malla S F, Elshenawy E A, Hammad S F, et al. Analytica Chimica Acta, 2022, 1197, 339491. 23 Xie J P, Zheng Y G, Ying J Y. Journal of the American Chemical Society, 2009, 131 (3), 888. 24 Zhang T, Zhang S T, Liu J, et al. Analytical Chemistry, 2020, 92 (4), 3426. 25 Sarkar T, Bohidar H B, Solanki P R. International Journal of Biological Macromolecules, 2018, 109, 687. 26 Liu F Y, Zhao S L, Lai X D, et al. Food Chemistry, 2022, 393, 133321. 27 Chen C X, Zhao D, Hu T, et al. Sensors and Actuators B-Chemical, 2017, 241, 779. 28 Zhang R Z, Adsetts J R, Nie Y T, et al. Carbon, 2018, 129, 45. 29 Xia C, Hai X, Chen X W, et al. Talanta, 2017, 168, 269. 30 Pan L L, Sun S, Zhang A D, et al. Advanced Materials, 2015, 27 (47), 7782. 31 Chen X X, Jin Q Q, Wu L Z, et al. Angewandte Chemie International Edition, 2014, 53 (46), 12542. 32 Arcudi F, Dordevic L, Prato M. Angewandte Chemie International Edition, 2016, 55 (6), 2107. 33 Liu Y B, Zheng Y Y, Du B W, et al. Industrial & Engineering Chemistry Research, 2017, 56 (11), 2999. 34 Nazir K, Ahmed A, Hussain S Z, et al. Applied Nanoscience, 2020, 10 (9), 3411. 35 Sri S, Kumar R, Panda A K, et al. ACS Applied Materials & Interfaces, 2018, 10 (44), 37835. 36 Chen C C, Lo S C, Wei P K. Nanomaterials, 2022, 12 (1), 88. 37 Wu J, Li L, Zhu D, et al. Analytica Chimica Acta, 2011, 694 (1), 115. 38 Janani B, Syed A, Thomas A M, et al. Optik, 2020, 204, 164160. 39 Devadiga A, Vidya S K, Saidutta M B. Materials Letters, 2017, 207, 66. 40 Hu F, Li Y, Zhang Y, et al. Vibrational Spectroscopy, 2022, 118, 103342. 41 Mohammadpour Z, Safavi A, Shamsipur M. Chemical Engineering Journal, 2014, 255, 1. 42 Liu C G, Wang J J, Zhang X P, et al. Chinese Journal of Analytical Chemistry, 2017, 45 (2), 163. 43 Hosseini M, Vaezi Z, Ganjali M R, et al. Sensor Letters, 2010, 8 (6), 807. 44 Ma Y S, Mei J, Bai J L, et al. Materials Research Express, 2018, 5 (5), 055605. 45 Yu Y, Sheng W, Liu C, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 249, 119279.