Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22070224-8    https://doi.org/10.11896/cldb.22070224
  无机非金属及其复合材料 |
基于金纳米簇和碳量子点的比率荧光传感法快速检测Hg2+
刘飞燕1,2, 赵笙良1,2, 赖璇迪3, 陆志扬1,2, 李霖峰1,2, 韩培刚1,2,*, 陈丽琼2,3,*
1 深圳大学应用技术学院,广东 深圳 518061
2 深圳技术大学新材料与新能源学院,广东 深圳 518118
3 深圳技术大学分析测试中心,广东 深圳 518118
Rapid Detection of Hg2+ by a Ratiometric Fluorescence Sensing Method Based on Gold Nanoclusters and Carbon Quantum Dots
LIU Feiyan1,2, ZHAO Shengliang1,2, LAI Xuandi3, LU Zhiyang1,2, LI Linfeng1,2, HAN Peigang1,2,*, CHEN Liqiong2,3,*
1 College of Applied Sciences, Shenzhen University, Shenzhen 518061, Guangdong, China
2 College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
3 Analysis and Testing Center, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
下载:  全 文 ( PDF ) ( 13782KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 汞离子(Hg2+)是一种致癌和无法生物降解的高毒重金属污染物,因此开发Hg2+的快速检测方法对环境监测和人类健康维护具有重要意义。本研究成功构建了对Hg2+快速裸眼筛查和检测的比率荧光传感器。首先采用水热合成法制备了发红色荧光的金纳米簇(Gold nanoclusters,AuNCs),采用微波辅助法制备了具有高量子产率(85%)且发蓝色荧光的碳量子点(Carbon quantum dots,CDs),然后将AuNCs和CDs简单混合,构建了具有单一激发和双发射的AuNCs-CDs比率荧光传感器。基于Hg2+和Au+的高亲和嗜金属效应,Hg2+可明显猝灭AuNCs-CDs中AuNCs在670 nm处的荧光发射峰,而CDs在420 nm处的参比荧光强度基本保持不变。AuNCs-CDs的比率荧光信号(I670/I420)与在0.005~1 mg·L-1范围内的Hg2+浓度呈良好的线性关系,检出限为1.5 μg·L-1。与此同时,随着Hg2+浓度的增加,AuNCs-CDs在紫外灯下的发光颜色可用裸眼明显分辨(由粉红色变为蓝色)。该方法不仅对其他金属离子具有抗干扰性,而且在河水、大米以及白菜实际样品检测中也具有可行性,加标回收率为84.5%~105.1%。因此,利用AuNCs-CDs可构建一种理想的比率荧光传感器,其可用于Hg2+的快速灵敏检测,并有望真正应用到食品安全和环境检测中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘飞燕
赵笙良
赖璇迪
陆志扬
李霖峰
韩培刚
陈丽琼
关键词:  金纳米簇(AuNCs)  碳量子点(CDs)  比率荧光传感器  快速检测  汞离子(Hg2+)    
Abstract: Mercury ion (Hg2+) is a contaminant of strong carcinogenicity, non-biodegradability and hypertoxicity, thus it is significant to design a rapid detection method of Hg2+ to protect the human health and earth environment. In this work, a radiometric fluorescence sensor, via a single excitation wavelength and dual emission wavelength, was developed by mixing gold nanoclusters (AuNCs) and carbon quantum dots (CDs) for rapid naked-eye screening and detection of Hg2+, where the AuNCs with red fluorescence were prepared by hydrothermal synthesis method, and the CDs with blue fluorescence were prepared by microwave-assistant method with high quantum yield (85%). Based on the high-affinity metallophilic Hg2+-Au+ interactions, the fluorescence emission peak of AuNCs at 670 nm could be quenched significantly, while the reference fluorescence intensity of CDs at 420 nm was basically not affected by Hg2+in AuNCs-CDs. There is a linear relationship between the ratiometric fluorescence signal (I670/I420) of AuNCs-CDs and the concentration of Hg2+ (0.005—1 mg·L-1) with the limit of detection of 1.5 μg·L-1. As the concentration of Hg2+ rising, the fluorescence color of AuNCs-CDs could be distinguished by bare-eyes (from pink to blue) under UV lights. This developed method was not only anti-interferential to other metal ions, but also feasible in the detection of actual samples, such as river water, rice and cabbage, with the recovery rate of Hg2+ in the range of 84.5%—105.1%. Therefore, AuNCs-CDs can be used to construct an ideal ratiometric fluorescent sensor for the rapid and sensitive detection of Hg2+ to the further applications on the food safety and environmental detection.
Key words:  gold nanoclusters (AuNCs)    carbon quantum dots (CDs)    ratiometric fluorescence sensor    rapid detection    mercury ion (Hg2+)
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TB333  
基金资助: 广东省普通高校重点领域(乡村振兴)项目(2020ZDZX1009);深圳市科技计划基础研究面上项目(JCYJ20190813103601660)
通讯作者:  *韩培刚,深圳技术大学新材料与新能源学院特聘教授、博士研究生导师。1985年、1997年、2000年分别于兰州大学、香港科技大学、香港城市大学获得理学学士、工学硕士、工学博士学位。目前主要从事材料表面技术的应用开发和太阳能光热与光伏应用技术的研究工作。在国内外发表学术论文50多篇,拥有中国专利技术10多项。hanpeigang@sztu.edu.cn 陈丽琼,深圳技术大学新材料与新能源学院教授、硕士研究生导师。2000年和2009年于中山大学分别获得理学学士和理学博士学位。主要从事纳米材料的可控制备与分析测试应用、快速检测技术与装置、仪器分析测试与标准方面的研究。在Food Chemistry等杂志发表学术论文10多篇。chenliqiong@sztu.edu.cn   
作者简介:  刘飞燕,2014年6月、2017年6月、2020年6月分别于广东海洋大学、湖南师范大学、华南理工大学获得工学学士、医学硕士、工学博士学位。现为深圳大学和深圳技术大学联合培养的博士后,导师为陈丽琼教授和韩培刚教授。目前主要从事纳米材料在光学传感快速检测方法中的研究。已获授权发明专利1项,发表SCI论文8篇,EI论文1篇,包括Journal of Hazardous Materials、Food chemistry等。
引用本文:    
刘飞燕, 赵笙良, 赖璇迪, 陆志扬, 李霖峰, 韩培刚, 陈丽琼. 基于金纳米簇和碳量子点的比率荧光传感法快速检测Hg2+[J]. 材料导报, 2023, 37(21): 22070224-8.
LIU Feiyan, ZHAO Shengliang, LAI Xuandi, LU Zhiyang, LI Linfeng, HAN Peigang, CHEN Liqiong. Rapid Detection of Hg2+ by a Ratiometric Fluorescence Sensing Method Based on Gold Nanoclusters and Carbon Quantum Dots. Materials Reports, 2023, 37(21): 22070224-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070224  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22070224
1 Yang J J, Wang F L, Yuan H Q, et al. Nanoscale, 2019, 11 (39), 17967.
2 Liu M X, Tang F L, Yang Z L, et al. Journal of Analytical Methods in Chemistry, 2019, 2019, 1095148.
3 Xu J, Li J, Zhong W, et al. Chinese Chemical Letters, 2021, 32 (8), 2390.
4 Shang L, Xu J, Nienhaus G U. Nano Today, 2019, 28, 100767.
5 Bai Y L, Shu T, Su L, et al. Crystals, 2020, 10 (5), 357.
6 El-Sayed N, Schneider M. Journal of Materials Chemistry B, 2020, 8 (39), 8952.
7 Ju Y J, Li N, Liu S G, et al. Sensors and Actuators B-Chemical, 2018, 275, 244.
8 Pan U N, Sanpui P, Paul A, et al. ACS Applied Bio Materials, 2019, 2 (8), 3144.
9 Niu Q Q, Gao P F, Yuan M J, et al. Microchemical Journal, 2019, 146, 1140.
10 Zhang S, Zhang D, Zhang X, et al. Analytical Chemistry, 2017, 89 (6), 3538.
11 Agarwalla H, Mahajan P S, Sahu D, et al. Inorganic Chemistry, 2016, 55 (22), 12052.
12 Yu C H. Analytical Sciences, 2021, 37 (8), 1181.
13 Wang Y, Zhu A L, Fang Y Y, et al. Journal of Environmental Sciences, 2022, 115, 403.
14 Spearman S, Bartrem C, Sharshenova A A, et al. Applied Sciences-Basel, 2022, 12 (4), 1943.
15 Lu Z W, Li J, Ruan K, et al. Chemical Engineering Journal, 2022, 435, 134979.
16 Li W J, Liu D, Bi X Y, et al. Sensors and Actuators A-Physical, 2020, 302, 111794.
17 Thakur N S, Mandal N, Banerjee U C. ACS Omega, 2018, 3 (12), 18553.
18 Gao X, Ma Z Y, Sun M J, et al. Food Chemistry, 2022, 369, 130964.
19 Xie H, Dong J, Duan J, et al. Sensors and Actuators B-Chemical, 2018, 259, 1082.
20 Wang J, Qiu Y, Li D, et al. Microchimica Acta, 2019, 186 (12), 809.
21 Schwenke A M, Hoeppener S, Schubert U S. Advanced Materials, 2015, 27 (28), 4113.
22 El-Malla S F, Elshenawy E A, Hammad S F, et al. Analytica Chimica Acta, 2022, 1197, 339491.
23 Xie J P, Zheng Y G, Ying J Y. Journal of the American Chemical Society, 2009, 131 (3), 888.
24 Zhang T, Zhang S T, Liu J, et al. Analytical Chemistry, 2020, 92 (4), 3426.
25 Sarkar T, Bohidar H B, Solanki P R. International Journal of Biological Macromolecules, 2018, 109, 687.
26 Liu F Y, Zhao S L, Lai X D, et al. Food Chemistry, 2022, 393, 133321.
27 Chen C X, Zhao D, Hu T, et al. Sensors and Actuators B-Chemical, 2017, 241, 779.
28 Zhang R Z, Adsetts J R, Nie Y T, et al. Carbon, 2018, 129, 45.
29 Xia C, Hai X, Chen X W, et al. Talanta, 2017, 168, 269.
30 Pan L L, Sun S, Zhang A D, et al. Advanced Materials, 2015, 27 (47), 7782.
31 Chen X X, Jin Q Q, Wu L Z, et al. Angewandte Chemie International Edition, 2014, 53 (46), 12542.
32 Arcudi F, Dordevic L, Prato M. Angewandte Chemie International Edition, 2016, 55 (6), 2107.
33 Liu Y B, Zheng Y Y, Du B W, et al. Industrial & Engineering Chemistry Research, 2017, 56 (11), 2999.
34 Nazir K, Ahmed A, Hussain S Z, et al. Applied Nanoscience, 2020, 10 (9), 3411.
35 Sri S, Kumar R, Panda A K, et al. ACS Applied Materials & Interfaces, 2018, 10 (44), 37835.
36 Chen C C, Lo S C, Wei P K. Nanomaterials, 2022, 12 (1), 88.
37 Wu J, Li L, Zhu D, et al. Analytica Chimica Acta, 2011, 694 (1), 115.
38 Janani B, Syed A, Thomas A M, et al. Optik, 2020, 204, 164160.
39 Devadiga A, Vidya S K, Saidutta M B. Materials Letters, 2017, 207, 66.
40 Hu F, Li Y, Zhang Y, et al. Vibrational Spectroscopy, 2022, 118, 103342.
41 Mohammadpour Z, Safavi A, Shamsipur M. Chemical Engineering Journal, 2014, 255, 1.
42 Liu C G, Wang J J, Zhang X P, et al. Chinese Journal of Analytical Chemistry, 2017, 45 (2), 163.
43 Hosseini M, Vaezi Z, Ganjali M R, et al. Sensor Letters, 2010, 8 (6), 807.
44 Ma Y S, Mei J, Bai J L, et al. Materials Research Express, 2018, 5 (5), 055605.
45 Yu Y, Sheng W, Liu C, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 249, 119279.
[1] 赵笙良, 刘飞燕, 陈丽琼. 金纳米材料光学传感快速检测方法研究要点初探[J]. 材料导报, 2021, 35(19): 19099-19115.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed