Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19099-19115    https://doi.org/10.11896/cldb.20050221
  金属与金属基复合材料 |
金纳米材料光学传感快速检测方法研究要点初探
赵笙良1,2, 刘飞燕1, 陈丽琼1
1 深圳技术大学新材料与新能源学院,深圳 518118
2 深圳大学应用技术学院,深圳 518061
Review on the Key Points of the Rapid Detection Methods Based on Gold Nanomaterial Optical Sensors
ZHAO Shengliang1,2, LIU Feiyan1, CHEN Liqiong1
1 College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
2 College of Applied Technology, Shenzhen University, Shenzhen 518061, China
下载:  全 文 ( PDF ) ( 7546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于金纳米材料光学性能优良、稳定性高以及易于表面功能化等特点而建立的纳米金光学传感检测方法,具有灵敏度高、准确、易操作、可视化和成本低等优点。金纳米材料类传感器是利用功能化纳米金与目标物之间发生相互作用,使得金纳米颗粒的尺寸、形状和聚集状态发生改变,从而引起溶液颜色、荧光和散射强度发生变化,为目标物的快速检测提供了出色的测定平台。
为更好地介绍金纳米材料在现代检测领域的重要作用,本文首先总结了近年来出现的四种常见纳米金光学传感检测方法:纳米金聚集光学传感法、纳米金刻蚀光学传感法、纳米金荧光光学传感法、纳米金散射光学传感法。通过介绍这些方法的检测原理,探讨了其在化学、生物和环境领域的发展及应用。随后,通过分析四种策略的设计思路,初步总结出七个关于开发纳米金光学传感检测技术实验要点,分别是纳米金的合成与表面功能化、溶液pH、反应温度和反应时间、选择性、体系检出限、方法准确性、体系可重复利用性。通过详尽分析这些要点的重要性,为接下来从事相关领域研究的科研工作者提供实验设计思路和经验。
最后,本文还探讨了目前基于纳米金光学传感检测方法所面临的一些主要挑战,并展望了该类方法在未来的发展方向。例如,通过将该类方法与智能手机、层析试纸条等技术相结合,实现检测过程的简单化、便携化。总体来说,基于金纳米材料的光学传感检测方法具有良好的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵笙良
刘飞燕
陈丽琼
关键词:  纳米金  合成法  功能化  光学传感  快速检测    
Abstract: Based on the excellent optical properties, good stability and easy surface functionalization of gold nano-materials, the nano-gold optical sen-sing detection method is established, which has the advantages of high sensitivity, rapid detection, easy operation, visualization, and low cost. This type of sensor makes use of the interaction between functionalized gold nanoparticles and the target to show different colors, fluorescence quenching and scattering intensity changes due to the change of size, shape and aggregation state of gold nanoparticles, which provides an excellent detection platform for the rapid detection of the target.
In this review, four common nano-gold optical sensing detection methods have been summarized to better introduce the important role of gold nanomaterials in the modern detection field, including nano-gold aggregation optical sensing method, nano-gold etching optical sensing method, nano-gold fluorescence optical sensing method, and nano-gold scattering optical sensing method. Through introducing the detection principles of these different strategies, the development and applications of nano-gold optical sensors in chemical, biological and environmental fields are discussed. Subsequently, through analyzing these four methods' experimental design ideas, seven points for the development of nano-gold optical sensing method are preliminarily summarized, namely: gold nanoparticles synthesis and surface functionalization, solution pH, reaction temperature and reaction time, selectivity, system detection limit, method accuracy, and system reusability. Through analyzing the importance of these experimental points, it will provide scientific researchers with reference of experimental design ideas and experience.
Finally, this review discusses several challenges of current nano-gold optical sensing detection methods and forecasts its' future development direction. For example, the technologies of smart phones and immunochromatographic strips can be combined with such methods to realize the simplification and portability in the process of detection. In general, it will have a good development prospect for the optical sensing detection method based on gold nanomaterials.
Key words:  gold nanoparticles    synthesis method    functionalization    optical sensor    rapid detection
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TB383  
基金资助: 广东省普通高校重点领域(乡村振兴)项目(2020ZDZX1009);深圳市科技计划基础研究面上项目(JCYJ20190813103601660);深圳技术大学自制实验仪器设备基金项目资助(2020XZY009)
通讯作者:  chenliqiong@sztu.edu.cn   
作者简介:  赵笙良,2018年6月毕业于中北大学,获得工学学士学位。现为深圳大学应用技术学院硕士研究生,在陈丽琼教授的指导下进行研究。目前主要研究领域为纳米金可视化快速检测方法研究。
陈丽琼,深圳技术大学新材料与新能源学院教授、硕士研究生导师。2000年6月份本科毕业于中山大学化学与化学工程学院。2009年6月在中山大学化学与化学工程学院获得博士学位。2003—2010年就职于深圳清华大学研究院新材料与生物医药研究所,任工程师/实验室副主任;2010—2017年就职于深圳市计量质量检测研究院化工产品检测所任实验室主任;2018年至今,就职于深圳技术大学新材料与新能源学院,教授。主要从事纳米材料的可控制备与分析测试应用、快速检测技术与装置、仪器分析测试与标准方面的研究。近年来,一直从事纳米材料制备与应用、材料质量检测与标准化研究,发表学术论文10多篇,包括Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy、Food Analytical Methods等。主持参与2项国际标准、8项国家标准、4项团体标准的制修订;获授权发明专利8项、科研奖项2项;获“玩具标准化突出贡献专家”荣誉。
引用本文:    
赵笙良, 刘飞燕, 陈丽琼. 金纳米材料光学传感快速检测方法研究要点初探[J]. 材料导报, 2021, 35(19): 19099-19115.
ZHAO Shengliang, LIU Feiyan, CHEN Liqiong. Review on the Key Points of the Rapid Detection Methods Based on Gold Nanomaterial Optical Sensors. Materials Reports, 2021, 35(19): 19099-19115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050221  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19099
1 Ojuederie O B, Babalola O O. International Journal of Environmental Research and Public Health, 2017, 14(12), 1504.
2 Duruibe J O, Ogwuegbu M O C, Egwurugwu J N. International Journal of Physical Sciences, 2007, 2(5), 112.
3 Kailasa S K, Koduru J R, Desai M L, et al. TrAC Trends in Analytical Chemistry, 2018, 105, 106.
4 Long X, Miro M, Hansen E H. Analyst, 2006, 131(1), 132.
5 Djerahov L, Vasileva P, Karadjova I. Microchemical Journal, 2016,129, 23.
6 Tsuyumoto I, Maruyama Y. Analytical Chemistry, 2011, 83(19), 7566.
7 Boussemart M, van den Berg C M G, Ghaddaf M. Analytica Chimica Acta, 1992, 262(1), 103.
8 Batterham G J, Munksgaard N C, Parry D L. Journal of Analytical Ato-mic Spectrometry, 1997, 12(11), 1277.
9 Wang S, Chinnasamy T, Lifson M A, et al. Trends Biotechnol, 2016, 34(11), 909.
10 Choi S. Biotechnology Advances, 2016, 34(3), 321.
11 Nilghaz A, Guan L, Tan W, et al. ACS Sensors, 2016, 1(12), 1382.
12 Chuang T L, Chang C C, Chu-Su Y, et al. Lab on A Chip, 2014, 14(16), 2968.
13 Chang D, Zakaria S, Deng M, et al. Sensors, 2016, 16(12), 2061.
14 Shen L, Hagen J A, Papautsky I. Lab on A Chip, 2012, 12(21), 4240.
15 Ding Y, Wang S, Li J, et al. TrAC Trends in Analytical Chemistry, 2016, 82, 175.
16 Vilela D, Gonzalez M C, Escarpa A. Analytica Chimica Acta, 2012, 751, 24.
17 Guo Y, Cao F, Lei X, et al. Nanoscale, 2016, 8(9), 4852.
18 Lai W, Wei Q, Xu M, et al. Biosensors and Bioelectronics, 2017, 89, 645.
19 Zhang C, Lai C, Zeng G, et al. Biosensors and Bioelectronics, 2016, 81, 61.
20 Qin L, Zeng Z, Zeng G, et al. Applied Catalysis B: Environmental, 2019, 252, 47.
21 Liu D, Wang Z, Jiang X. Nanoscale, 2011, 3(4), 1421.
22 Jans H, Huo Q. Chemical Society Reviews, 2012, 41(7), 2849.
23 Zhang Z, Wang H, Chen Z, et al. Biosensors and Bioelectronics, 2018, 114, 52.
24 Shrivas K, Shankar R, Dewangan K. Sensors and Actuators B: Chemical, 2015, 220, 1376.
25 Yeh S I, Fang W F, Huang C J, et al. Journal of Visualized Experiments: JoVE, 2016, 27(115), 54424.
26 Sattarahmady N, Tondro G H, Gholchin M, et al. Biochemical Enginee-ring Journal, 2015, 97, 1.
27 Trantakis I A, Sturla S J. Chemical Communications, 2014, 50(98), 15517.
28 Chang C C, Wei S C, Wu T H, et al. Biosensors and Bioelectronics, 2013, 42, 119.
29 Chang C C, Chen C Y, Chen C P, et al. Analytical Methods, 2015, 7(1), 29.
30 Ahirwar R, Nahar P. Analytical and Bioanalytical Chemistry, 2016, 408(1), 327.
31 Hu Q, Fu Y, Xu X, et al. Analyst, 2016, 141(3), 1136.
32 Bai W, Zhu C, Liu J, et al. Environmental Toxicology and Chemistry, 2015, 34(10), 2244.
33 Du J, Zhu B, Leow W R, et al. Small, 2015, 11(33), 4104.
34 Liu D, Qu W, Chen W, et al. Analytical Chemistry, 2010, 82(23), 9606.
35 Chao C H, Wu C S, Huang C C, et al. Microelectronic Engineering, 2012, 97, 294.
36 Chai F, Wang C, Wang T, et al. ACS Applied Materials & Interfaces, 2010, 2(5), 1466.
37 Xia F, Zuo X, Yang R, et al. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(24), 10837.
38 Polavarapu L, Pérez-Juste J, Xu Q H, et al. Journal of Materials Che-mistry C, 2014, 2(36), 7460.
39 Deymehkar E, Taher M A, Karami C, et al. Silicon, 2017, 10(4), 1329.
40 Ratnarathorn N, Chailapakul O, Dungchai W. Talanta,2015,132, 613.
41 Sato K, Hosokawa K, Maeda M. Journal of the American Chemical Society, 2003, 125(27), 8102.
42 Li H, Rothberg L J. Journal of the American Chemical Society, 2004, 126(35), 10958.
43 Li H, Rothberg L. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39), 14036.
44 Kanayama N, Sekine T, Ozasa K, et al. Langmuir, 2016, 32(49), 13296.
45 Sekine T, Kanayama N, Ozasa K, et al. Langmuir, 2018, 34(49), 15078.
46 Cui L, Ke G, Zhang W Y, et al. Biosensors and Bioelectronics, 2011, 26(5), 2796.
47 Liu P, Yang X, Sun S, et al. Analytical Chemistry, 2013, 85(16), 7689.
48 Park C, Song Y, Jang K, et al. Sensors and Actuators B: Chemical, 2018, 261, 497.
49 Domínguez-González R, González Varela L, Bermejo-Barrera P. Talanta, 2014, 118, 262.
50 Simon T, Shellaiah M, Steffi P, et al. Analytica Chimica Acta, 2018, 1023, 96.
51 Zeng Z, Cui B, Wang Y, et al. ACS Applied Materials & Interfaces, 2015, 7(30), 16518.
52 Li J J, Kong C Y, Liu Q Y, et al. Analyst, 2018, 143(17), 4051.
53 Yun W, Jiang J, Cai D, et al. Biosensors and Bioelectronics, 2016, 77, 421.
54 Wang G, Akiyama Y, Takarada T, et al. Chemistry,2016,22(1),258.
55 Wang X B, Wang Y L, Yang J, et al. Journal of the American Chemical Society, 2009, 131(45), 16368.
56 Rajamanikandan R, Ilanchelian M. Analytical Methods,2019,11(1),97.
57 Zeng J B, Cao Y Y, Chen J J, et al. Nanoscale, 2014, 6(17), 9939.
58 Lan Y J, Lin Y W. Analytical Methods, 2014, 6(18), 7234.
59 Zhu J, Yu Y Q, Li J J, et al. RSC Advances, 2016, 6(30), 25611.
60 Chen Y Y, Chang H T, Shiang Y C, et al. Analytical Chemistry, 2009, 81(22), 9433.
61 Shi X H, Gu W, Zhang C L, et al. Dalton Transactions, 2015, 44(10), 4623.
62 Liu R, Chen Z, Wang S, et al. Talanta, 2013, 112, 37.
63 Lee Y F, Deng T W, Chiu W J, et al. Analyst, 2012, 137(8), 1800.
64 Li F M, Liu J M, Wang X X, et al. Sensors and Actuators B: Chemical, 2011, 155(2), 817.
65 Li Y R, Wang Q R, Zhou X M, et al. Sensors and Actuators B: Chemical, 2016, 228, 366.
66 Chen Q A, Lin T R, Huang J L, et al. Analytical Methods, 2018, 10(5), 504.
67 Xin J W, Zhang F Q, Gao Y X, et al. Talanta, 2012, 101, 122.
68 Saa L, Coronado-Puchau M, Pavlov V, et al. Nanoscale, 2014, 6(13), 7405.
69 Zhong Q M, Chen Y Y, Qin X, et al. Microchimica Acta, 2019, 186(3), 8.
70 Chen Z H, Chen C Q, Huang H W, et al. Analytical Chemistry, 2018, 90(10), 6222.
71 Wang H Q, Rao H H, Xue X, et al. Analytica Chimica Acta, 2020, 1097, 222.
72 Wu S, Li D D, Gao Z M, et al. Microchimica Acta, 2017, 184(11), 4383.
73 Lu S M, Zhang X, Chen L, et al. Sensors and Actuators B: Chemical, 2018, 259, 1066.
74 Sapsford K E, Berti L, Medintz I L. Angewandte Chemie International Edition, 2006, 45(28), 4562.
75 Jain P K, El-Sayed I H, El-Sayed M A. Nano Today, 2007, 2(1), 18.
76 Mahnashi M H, Mahmoud A M, Alkahtani S A, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117846.
77 Abarghoei S, Fakhri N, Borghei Y S, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 251.
78 Xu M, Gao Z, Zhou Q, et al. Biosensors and Bioelectronics, 2016, 86, 978.
79 Rao H, Ge H, Wang X, et al. Microchimica Acta, 2017, 184(8), 3017.
80 Shi H, Nie Q, Yang M, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112259.
81 Kumar N, Seth R, Kumar H. Analytical Biochemistry, 2014, 456, 43.
82 Sun L, Wang T, Sun Y, et al. Talanta, 2020, 207, 120294.
83 Xie J, Zheng Y, Ying J Y. Chemical Communications, 2010, 46(6), 961.
84 Hu D H, Sheng Z H, Gong P, et al. Analyst, 2010, 135(6), 1411.
85 Wei H, Wang Z D, Yang L M, et al. Analyst, 2010, 135(6), 1406.
86 Rawat K A, Singhal R K, Kailasa S K. RSC Advances, 2016, 6(38), 32025.
87 Rao H B, Ge H W, Wang X X, et al. Microchimica Acta, 2017, 184(8), 3017.
88 Lin Y H, Tseng W L. Analytical Chemistry, 2010, 82(22), 9194.
89 Shi Y P, Pan Y, Zhang H, et al. Biosensors and Bioelectronics, 2014, 56, 39.
90 Hung S H, Lee J Y, Hu C C, et al. Food Chemistry, 2018, 260, 61.
91 Wu X L, Song Y, Yan X, et al. Biosensors and Bioelectronics, 2017, 94, 292.
92 Fu X L, Lou T T, Chen Z P, et al. ACS Applied Materials & Interfaces, 2012, 4(2), 1080.
93 Guo J J, Zhang Y, Luo Y L, et al. Talanta, 2014, 125, 385.
94 Shang L, Qin C J, Wang T, et al. Journal of Physical Chemistry C, 2007, 111(36), 13414.
95 Jans H, Liu X, Austin L, et al. Analytical Chemistry, 2009, 81(22), 9425.
96 Liu X, Dai Q, Austin L, et al. Journal of the American Chemical Society, 2008, 130(9), 2780.
97 Dasary S S R, Senapati D, Singh A K, et al. ACS Applied Materials & Interfaces, 2010, 2(12), 3455.
98 Beqa L, Singh A K, Khan S A, et al. ACS Applied Materials & Interfaces, 2011, 3(3), 668.
99 Zou C, Larisika M, Nagy G, et al. Journal of Physical Chemistry B, 2013, 117(33), 9606.
100 Qu W G, Deng B, Zhong S L, et al. Chemical Communications, 2011, 47(4), 1237.
101 Dasary S S R, Singh A K, Senapati D, et al. Journal of the American Chemical Society, 2009, 131(38), 13806.
102 Ye Y, Liu H, Yang L, et al. Nanoscale, 2012, 4(20), 6442.
103 Dasary S S R, Ray P C, Singh A K, et al. Analyst, 2013, 138(4), 1195.
104 Kneipp K, Wang Y, Kneipp H, et al. Physical Review Letters, 1997, 78(9), 1667.
105 Du B, Li Z, Cheng Y. Talanta, 2008, 75(4), 959.
106 Sanchez-Martinez M L, Aguilar-Caballos M P, Gomez-Hens A. Analytica Chimica Acta, 2009, 636(1), 58.
107 Shellaiah M, Simon T, Sun K W, et al. Sensors and Actuators B: Chemical, 2016, 226, 44.
108 Zhang W J, Du Q, Dou Z, et al. Sensors and Actuators B: Chemical, 2020, 321, 128548.
109 Zhang H, Harpster M H, Park H J, et al. Analytical Chemistry, 2011, 83(1), 254.
110 Hu Y, Liao J, Wang D, et al. Analytical Chemistry, 2014, 86(8), 3955.
111 Giovannozzi A M, Rolle F, Sega M, et al. Food Chemistry, 2014, 159, 250.
112 Lou T, Wang Y, Li J, et al. Analytical and Bioanalytical Chemistry, 2011, 401(1), 333.
113 Cui Y, Tang Y, Fan S, et al. Journal of Physical Chemistry C, 2020, 124 (35), 19267.
114 Grabar K C, Freeman R G, Hommer M B, et al. Analytical Chemistry, 1995, 67(4), 735.
115 Yu M. Australian Journal of Chemistry, 2014, 67(5), 813.
116 Huang H Z, Yang X R. Carbohydrate Research, 2004, 5(6), 2340.
117 Guan H, Yu J, Chi D. Food Control, 2013, 32(1), 35.
118 Guo J F, Hou C J, Yang M, et al. Analytical Methods, 2016, 8(27), 5526.
119 Xie J, Zheng Y, Ying J Y. Journal of the American Chemical Society, 2009, 131(3), 888.
120 Zhao P X, Li N, Astruc D. Coordination Chemistry Reviews, 2013, 257(3-4), 638.
121 Shah M, Badwaik V, Kherde Y, et al. Frontiers in Bioscience, 2014, 19(8), 1320.
122 Grzelczak M, Perez-Juste J, Mulvaney P, et al. Chemical Society Reviews, 2008, 37(9), 1783.
123 El-Husseini D M, Helmy N M, Tammam R H. RSC Advances, 2016, 6(60), 54898.
124 Navarro J R, Werts M H. Analyst, 2013, 138(2), 583.
125 Botella P, Ortega I, Quesada M, et al. Dalton Transactions, 2012, 41(31), 9286.
126 Jakhmola A, Celentano M, Vecchione R, et al. Inorganic Chemistry Frontiers, 2017, 4(6), 1033.
127 Ramalingam V, Revathidevi S, Shanmuganayagam T S, et al. Gold Bulletin, 2017, 50(2), 177.
128 Laurent G, Bernhard C, Dufort S, et al. Nanoscale, 2016, 8(23), 12054.
129 Salabat A, Mirhoseini F. Journal of Molecular Liquids, 2018, 268, 849.
130 Ojea-Jiménez I, Campanera J M. The Journal of Physical Chemistry C, 2012, 116(44), 23682.
131 Qin L, Zeng G, Lai C, et al. Coordination Chemistry Reviews, 2018, 359, 1.
132 Wuithschick M, Birnbaum A, Witte S, et al. ACS Nano, 2015, 9(7), 7052.
133 Turkevich J, Stevenson P C, Hillier J. The Journal of Physical Chemistry, 1953, 57(7), 670.
134 Frens G. Nature Physical Science, 1973, 241(105), 20.
135 Shiba F. CrystEngComm, 2013, 15(42), 8412.
136 Yao X, Zhang G Y, Liu B, et al. Materials Reports, 2019, 33(Z1), 310(in Chinese).
姚旭, 张光友, 刘博, 等. 材料导报, 2019, 33(Z1), 310.
137 Ji X, Song X, Li J, et al. Journal of the American Chemical Society, 2007, 129(45), 13939.
138 Sivaraman S K, Kumar S, Santhanam V. Journal of Colloid and Interface Science, 2011, 361(2), 543.
139 Enustun B V, Turkevich J. Journal of the American Chemical Society, 1963, 85(21), 3317.
140 Yang X, Yang M X, Pang B, et al. Chemical Reviews, 2015, 115(19), 10410.
141 Giljohann D A, Seferos D S, Daniel W L, et al. Angewandte Chemie International Edition, 2010, 49(19), 3280.
142 Brust M, Walker M, Bethell D, et al. Journal of the Chemical Society,1994(7), 801.
143 Hostetler M J, Wingate J E, Zhong C J, et al. Langmuir, 1998, 14(1), 17.
144 Maye M M, Zhong C J. Journal of Materials Chemistry, 2000, 10(8), 1895.
145 Chen S, Murray R W. Langmuir, 1999, 15(3), 682.
146 Ingram R S, Hostetler M J, Murray R W. Journal of the American Chemical Society, 1997, 119(39), 9175.
147 Hostetler M J, Green S J, Stokes J J, et al. Journal of the American Chemical Society, 1996, 118(17), 4212.
148 Reid B T, Reed S M. Green Chemistry, 2016, 18(15), 4263.
149 Zaluzhna O, Li Y, Zangmeister C, et al. Chemical Communications, 2012, 48(3), 362.
150 Wieckowska A, Dzwonek M. Sensors and Actuators B: Chemical, 2016, 224, 514.
151 Sardar R, Shumaker-Parry J S. Chemistry of Materials, 2009, 21(7), 1167.
152 Kudaibergenov S E, Tatykhanova G S, Selenova B S. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26(6), 1198.
153 Zubarev E R, Xu J, Sayyad A, et al. Journal of the American Chemical Society, 2006, 128(47), 15098.
154 Gupta R K, Srinivasan M P, Dharmarajan R. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2011, 390(1-3), 149.
155 Leontowich A F G, Calver C F, Dasog M, et al. Langmuir, 2010, 26(2), 1285.
156 Rodriguez-Fernandez J, Perez-Juste J, Javier G D A F, et al. Langmuir, 2006, 22(16), 7007.
157 Brown K R, Walter D G, Natan M J. Chemistry of Materials, 2000, 12(2), 306.
158 Jana N R, Gearheart L, Murphy C J. Langmuir, 2001, 17(22), 6782.
159 Kwon K, Lee K Y, Lee Y W, et al. Journal of Physical Chemistry C, 2007, 111(3), 1161.
160 Piella J, Bastus N G, Puntes V. Chemistry of Materials, 2016, 28(4), 1066.
161 Jana N R, Gearheart L, Murphy C J. Chemistry of Materials, 2001, 13(7), 2313.
162 Qu Y, Pei X, Shen W, et al. Physica E-Low-Dimensional Systems & Nanostructures, 2017, 88, 133.
163 Das S K, Das A R, Guha A K. Small, 2010, 6(9), 1012.
164 Shi C, Zhu N, Cao Y, et al. Nanoscale Research Letters, 2015, 10(1), 1.
165 Huang Y, Kim D H. Nanoscale, 2012, 4(20), 6312.
166 Kumar B, Smita K, Sanchez E, et al. Advances in Natural Sciences-Nanoscience and Nanotechnology, 2016, 7(2), 025013.
167 El-Naggar M E, Shaheen T I, Fouda M M G, et al. Carbohydrate Polymers, 2016, 136, 1128.
168 Konishi Y, Tsukiyama T, Ohno K, et al. Hydrometallurgy, 2006, 81(1), 24.
169 Husseiny M I, El-Aziz M A, Badr Y, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 67(3-4), 1003.
170 Singaravelu G, Arockiamary J S, Kumar V G, et al. Colloids and Surfaces B: Biointerfaces, 2007, 57(1), 97.
171 Mukherjee P, Ahmad A, Mandal D, et al. Angewandte Chemie International Edition, 2001, 40(19), 3585.
172 Shankar S S, Ahmad A, Pasricha R, et al. Journal of Materials Chemistry, 2003, 13(7), 1822.
173 Huang J, Li Q, Sun D, et al. Nanotechnology, 2007, 18(10), 105104.
174 Ankamwar B, Chaudhary M, Sastry M. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 2005, 35(1), 19.
175 Badwaik V D, Bartonojo J J, Evans J W, et al. Langmuir, 2011, 27(9), 5549.
176 Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, et al. Process Biochemistry, 2015, 50(7), 1076.
177 Maruyama T, Fujimoto Y, Maekawa T. Journal of Colloid and Interface Science, 2015, 447, 254.
178 Kumar A, Bhatt M, Vyas G, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17360.
179 Ganeshkumar M, Sastry T P, Kumar M S, et al. Materials Research Bulletin, 2012, 47(9), 2113.
180 Gudlur S, Sanden C, Matouskova P, et al. Journal of Colloid and Interface Science, 2015, 456, 206.
181 Mcgilvray K L, Decan M R, Wang D S, et al. Journal of the American Chemical Society, 2006, 128(50), 15980.
182 Pandya A, Joshi K V, Modi N R, et al. Sensors and Actuators B: Chemical, 2012, 168, 54.
183 Bhosale M A, Chenna D R, Bhanage B M. Chemistry Select, 2017, 2(3), 1225.
184 Bohme D, Dupre N, Megger D A, et al. Inorganic Chemistry, 2007, 46(24), 10114.
185 Pyo K, Thanthirige V D, Kwak K, et al. Journal of the American Che-mical Society, 2015, 137(25), 8244.
186 Chen Y C, Lee I L, Sung Y M, et al. Talanta, 2013, 117, 70.
187 Xue D, Wang H, Zhang Y. Talanta, 2014, 119, 306.
188 Wang W, Dai Y, Xu K, et al. Journal of Zhejiang Normol University (Nat.Sci.), 2019, 42(4), 367(in Chinese).
王卫平, 戴媛媛, 徐珂, 等. 浙江师范大学 (自然科学版), 2019, 42(4), 367.
189 Ramezani M, Danesh N M, Lavaee P, et al. Biosensors and Bioelectro-nics, 2015, 70, 181.
190 Tan F, Liu X. Journal of Instrumental Analysis (Natural.Science.Edition), 2010, 29(8), 850(in Chinese).
谭峰, 刘学. 分析测试学报 (自然科学版), 2010, 29(8), 850.
191 Long D, Yu H. Analytical and Bioanalytical Chemistry, 2016, 408(29), 8551.
192 Hu L, Cai Y, Jiang G. Chemosphere, 2016, 156, 14.
193 Shahrivari S, Faridbod F, Ganjali M R. Spectrochim Acta A Mol Biomol Spectrosc, 2018, 191, 189.
194 Lu L, Guo L, Li J, et al. Applied Surface Science, 2016, 388, 431.
195 Zang Y, Lei J, Hao Q, et al. ACS Applied Materials & Interfaces, 2014, 6(18), 15991.
196 Bui M P N, Brockgreitens J, Ahmed S, et al. Biosensors and Bioelectronics, 2016, 85, 280.
197 Liu X, Hu Y, Sheng X, et al. Sensors and Actuators B: Chemical, 2017, 247, 245.
198 Guo J F, Huo D Q, Yang M, et al. Talanta, 2016, 161, 819.
199 Liu S, Li X. Materials Science and Engineering: B, 2019, 240, 49.
200 Wang Y, Wang L, Su Z, et al. Scientific Reports, 2017, 7(1), 1.
201 Qiu J M, Ni X, Zhou X T, et al. Journal of Shanghai Jiaotong University (Agricultural Science), 2018, 36(4), 7(in Chinese).
邱建敏, 倪璇, 周晓彤, 等. 上海交通大学学报 (农业科学版), 2018, 36(4), 7.
202 Zeng G, Zhang C, Huang D, et al. Biosensors and Bioelectronics, 2017, 90, 542.
203 Foroushani A, Zhang Y, Li D, et al. Chemical Communications, 2015, 51(14), 2921.
204 Wang J, Bian C, Tong J, et al. Thin Solid Films, 2012, 520(21), 6658.
205 Feng J, Shen Q, Wu J, et al. Food Control, 2019, 98, 333.
206 Guo J F, Hou C J, Yang M, et al. RSC Advances, 2016, 106(6), 104693.
207 Wang S, Su L, Wang L, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117809.
208 Zhang J, Cheng L, Lin L, et al. Food Science, 2017, 38(24), 202(in Chinese).
张静, 程琳, 林琳, 等. 食品科学, 2017, 38(24), 202.
209 Kailasa S K, Rohit J V. Sensors and Actuators B: Chemical, 2017, 244, 796.
210 Robby A I, Park S Y. Analytica Chimica Acta, 2019, 1082, 152.
211 Deng H H, Luo B Y, He S B, et al. Analytical Chemistry, 2019, 91(6), 4039.
212 Memon A G, Xing Y, Zhou X, et al. Journal of Hazardous Materials, 2020, 384, 120948.
213 Robby A I, Park S Y. Analytica Chimica Acta, 2019, 1082, 152.
214 Deng H H, Luo B Y, He S B, et al. Analytical Chemistry, 2019, 91(6), 4039.
215 Sang F, Li X, Zhang Z, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 109.
216 Lin T, Li Z, Song Z, et al. Talanta, 2016, 148, 62.
217 Zor E, Bekar N. Biosensors and Bioelectronics, 2017, 91, 211.
218 Chen G H, Chen W Y, Yen Y C, et al. Analytical Chemistry, 2014, 86(14), 6843.
219 Faham S, Khayatian G, Golmohammadi H, et al. Microchimica Acta, 2018, 185(8), 1.
220 Zheng L, Cai G, Wang S, et al. Biosensors and Bioelectronics, 2019, 124, 143.
[1] 吕博, 陈连喜. 磷酸基功能化二氧化硅材料的制备、性能和应用[J]. 材料导报, 2021, 35(Z1): 143-150.
[2] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[3] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[4] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[5] 徐群娜, 白忠薛, 马建中. 玉米醇溶蛋白的化学改性及应用研究进展[J]. 材料导报, 2021, 35(3): 3194-3203.
[6] 张关印, 关清卿, 庙荣荣, 宁平, 何亮. 共价有机骨架材料的合成及应用[J]. 材料导报, 2021, 35(13): 13215-13226.
[7] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[8] 王学凯, 王金淑, 杜玉成, 吴俊书, 腾威利, 车海冰, 靳翠鑫. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 3017-3027.
[9] 周杰, 杨明莉. 电化学方法制备MOF膜的研究进展[J]. 材料导报, 2020, 34(19): 19043-19049.
[10] 武伟, 董季玲, 张锦山, 范海兵, 尹坚, 刘洋, 丁皓, 曹鹏军. 功能化磁性纳米颗粒吸附废水中重金属的研究进展[J]. 材料导报, 2020, 34(17): 17124-17131.
[11] 余慧丽, 杭祖圣, 怀旭, 黄玉安, 张春祥, 张金泉. 基于催化活性提升的g-C3N4的表面活化、敏化及功能化研究进展[J]. 材料导报, 2020, 34(11): 11121-11128.
[12] 姚旭, 张光友, 刘博, 谢拯, 王煊军. 基于纳米金生长比色检测水体中的肼[J]. 材料导报, 2019, 33(z1): 310-313.
[13] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[14] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[15] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed