Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 22010187-7    https://doi.org/10.11896/cldb.22010187
  高分子与聚合物基复合材料 |
聚脲钢板复合层抗枪弹侵彻性能研究
肖颍杰1, 石少卿1,*, 刘盈丰2, 陈首3, 廖瑜1
1 陆军勤务学院军事设施系,重庆 401331
2 重庆对外建设(集团)有限公司,重庆 401121
3 96911部队,北京 100011
Study on Anti-penetration Characteristics of Gunshot-impacted Polyurea Steel Plate Composite Layer
XIAO Yingjie1, SHI Shaoqing1,*, LIU Yingfeng2, CHEN Shou3, LIAO Yu1
1 Department of Military Facility, Army Logistics Academy of PLA, Chongqing 401331, China
2 Chongqing Foregin Construction(Group) Co., Ltd., Chongqing 401121, China
3 96911 Troops,Beijing 100011,China
下载:  全 文 ( PDF ) ( 26750KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过开展轻武器枪弹试验和不同工况下弹体侵彻的数值模拟,对比研究了尖头弹和圆头弹两种不同形状弹体在800 m/s速度冲击下对聚脲钢板复合层和普通钢板的局部破坏情况,通过分析损伤机理和侵彻深度,探讨了高速冲击条件下聚脲涂覆材料对钢板层试件抗侵彻性能的影响。结果表明:对于0.4 mm厚的普通钢板试件和3.4 mm厚的聚脲钢板复合层试件,当弹体以800 m/s的速度侵彻时,涂覆3 mm厚聚脲层的试件抵抗尖头弹侵彻时侵彻深度比普通钢板试件降低了16.4%,抵抗圆头弹侵彻时降低了13.2%;圆头弹对两种试件造成的损伤区域更大,尖头弹更小。另基于尖头弹侵彻钢板的“延性弹孔扩大”损伤假设模型,提出了弹体侵彻聚脲涂覆钢板背弹面靶板的五种损伤过程假设,并结合枪弹试验对五种损伤过程假设进行了验证。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖颍杰
石少卿
刘盈丰
陈首
廖瑜
关键词:  聚脲  钢板  复合材料层  枪弹侵彻  数值模拟    
Abstract: By carrying out small arms rifle test and numerical simulation of projectile penetration under different working conditions, the local damage of polyurea steel plate composite layer and ordinary steel plate under impact of two different shapes of projectile, pointed projectile and rounded projectile, at 800 m/s velocity was comparatively studied. By analyzing damage mechanism and penetration depth,the influence of polyurea coating material on the penetration resistance of steel plate specimen under high speed impact was investigated.The results show that for 0.4 mm thick ordinary steel plate and 3.4 mm thick polyurea steel composite layer, when the projectile body penetrates at a speed of 800 m/s, the penetration depth of the polyurea coated specimen with a thickness of 3 mm decreases by 16.4% compared with that of the ordinary steel plate specimen when resisting the penetration of pointed projectile, and 13.2% when resisting the penetration of round projectile. The damage area caused by round projectile is larger and the damage area caused by pointed projectile is smaller.Based on the ‘ductile crater enlargement' damage hypothesis model of the pointed projectile penetrating steel plate, five damage process hypotheses of projectile penetrating polyurea coated steel back plate were proposed, and the five damage process hypotheses were verified by bullet test.
Key words:  polyurea    steel plate    composite layer    gunshot penetration    numerical simulation
发布日期:  2022-12-09
ZTFLH:  TB333  
基金资助: 国家军用标准(BY121B001);国防科技项目基金(CLJ19J019);重庆市自然科学基金(cstc2019jcyj-msxmX0598);重庆市研究生科研创新项目(CYS21525)
通讯作者:  *544961584@qq.com   
作者简介:  肖颍杰,硕士研究生,目前就读于陆军勤务学院军事设施系土木工程专业,主要从事防灾减灾工程和防护工程研究。
石少卿,陆军勤务学院教授、博士研究生导师,国家百千万人才,国家有突出贡献中青年专家,军队高层次学科拔尖人才,享受政府特殊津贴。主要从事防灾减灾工程及防护工程的教学科研工作,主持国家科技支撑计划课题、国家自然基金、军队重点科研课题10多项,近五年发表学术论文30余篇,其中被 SCI( EI) 收录10余篇。获国家科技进步二等奖1项,军队科技进步一等奖2项、二等奖5项。
引用本文:    
肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
XIAO Yingjie, SHI Shaoqing, LIU Yingfeng, CHEN Shou, LIAO Yu. Study on Anti-penetration Characteristics of Gunshot-impacted Polyurea Steel Plate Composite Layer. Materials Reports, 2022, 36(23): 22010187-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010187  或          http://www.mater-rep.com/CN/Y2022/V36/I23/22010187
1 Zhang W Y.Ceramics, 2020(8), 16(in Chinese).
张文毓. 陶瓷, 2020(8), 16.
2 Yao X H,Long S C,Zhang X Q.In: 12th National Conferenceon Explosive Mechanics 2018.Zhejiang ,2018, pp.7(in Chinese).
姚小虎,龙舒畅,张晓晴. 2018第十二届全国爆炸力学学术会议.浙江,2018, pp.7.
3 Tang X C,Meng L Y,Yao X H. Chinese Science Bulletin,2021,66(15), 1847(in Chinese).
唐晓畅,孟令怡,姚小虎. 科学通报, 2021,66(15), 1847.
4 Zheng C Y,Zhang D T,Liang Y M, et al.Materials Reports, 2021,35(23), 23205(in Chinese).
郑成燕,张典堂,梁燕民,等.材料导报, 2021,35(23), 23205.
5 Zhang D,Liu Y J,Leng J S. Acta Materiae Compositae Sinica,2021, 38(3), 698(in Chinese).
张豆,刘彦菊,冷劲松.复合材料学报, 2021, 38(3), 698.
6 Li H X,Ou Y K F,Zuo S Q, et al. Protective Engineering, 2020, 42(6),67(in Chinese).
李洪鑫,欧阳科峰,左社强,等.防护工程, 2020, 42(6),67.
7 Zhai W,Dai P R,He J Y,et al. Ordnance Industry Automation, 2018, 37(10), 65(in Chinese).
翟文,戴平仁,何金迎,等.兵工自动化, 2018, 37(10), 65.
8 Wang X M,Liu J,Chen C H,et al, Chinese Journal of Ship Research, 2021, 16(2),116(in Chinese).
王喜梦,刘均,陈长海,等.中国舰船研究, 2021, 16(2),116.
9 Liao Y,Shi S Q,Liang C K,et al, Acta Armamentarii, 2018, 39(10), 1988(in Chinese).
廖瑜,石少卿,梁朝科,等.兵工学报, 2018, 39(10), 1988.
10 Ackland K, Anderson C, Ngo T D.International Journal of Impact Engineering, 2013, 51, 13.
11 Amini M R,Isaacs J B, Nemat-Nasser S.International Journal of Impact Engineering, 2010, 37(1), 82.
12 Amini M R, Isaacs J, Nemat-Nasser S.Mechanics of Materials, 2010, 42(6), 628.
13 Amini M R, Simon J, Nemat-Nasser S.Mechanics of Materials, 2010, 42(6), 615.
14 Remennikov A, Ngo T, Mohotti D, et al. International Journal of Impact Engineering, 2017, 101, 78.
15 Gao Z,Li Y Q,Hou H L. Chinese Journal of High Pressure Physics, 2019,33(2), 156(in Chinese).
高照, 李永清, 侯海量.高压物理学报, 2019,33(2), 156.
16 Chu Dongyang, Li Zhijie, Yao Kaili, et al. International Journal of Impact Engineering, 2022, 163, 0734.
17 Backman M E,Goldsmith W.International Journal of Impact Engineering,1978, 16(1), 1.
18 Luccioni B, Ambrosini D.Mechanical Computational, 2004, 23, 571.
19 Amini M R, Amirkhizi A V, Nemat-Nasser S.International Journal of Impact Engineering, 2010, 37(1), 90.
[1] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[2] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[3] 肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
[4] 刘宇, 张桂芳, 漆鑫, 施哲, 严鹏, 姜琦. 电磁悬浮熔炼金属合金的研究进展:应用和数值模拟[J]. 材料导报, 2022, 36(21): 20080265-8.
[5] 刘玉宝, 王举金, 杨文, 刘风琴, 李亚琼, 崔凌霄, 张洋. LaFe合金在底吹氩钢包内熔化混匀的数值模拟研究[J]. 材料导报, 2022, 36(21): 21050172-7.
[6] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[7] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[8] 赵鸿飞, 郭丽丽, 赵颖, 苑菁茹, 运新兵. AZ31镁合金板材单双杆连续挤压变形过程及组织性能的对比[J]. 材料导报, 2022, 36(18): 21040305-7.
[9] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[10] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[11] 张昌青, 师文辰, 罗德春, 王树文, 刘晓, 崔国胜, 陈波阳, 张忠科, 辛舟, 芮执元. 锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究[J]. 材料导报, 2022, 36(15): 21040043-7.
[12] 张芳芳, 周蕊, 孙毅刚, 刘兵飞, 杜春志, 洪彬. 基于细观相变和黏弹性本构模型的SMP热力循环数值模拟对比分析[J]. 材料导报, 2022, 36(15): 21030129-7.
[13] 潘诗婷, 李凯, 张超慧, 史才军. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 21030145-9.
[14] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[15] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed