Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21030064-5    https://doi.org/10.11896/cldb.21030064
  无机非金属及其复合材料 |
喷射混凝土水化度的试验与理论模型研究
王家赫*
中国铁道科学研究院集团有限公司,铁道建筑研究所,北京 100081
Experimental and Theoretical Study on Cement Hydration Degree of Shotcrete
WANG Jiahe*
Railway Engineering Research Institution, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
下载:  全 文 ( PDF ) ( 2605KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以喷射混凝土为研究对象,通过绝热温升试验测试得到使用不同种类和不同掺量液体速凝剂时喷射混凝土绝热状态下芯部温度升高值随养护龄期的变化关系。另外,引入等效龄期概念,计算得到喷射混凝土水化度随等效龄期的变化关系,消除了绝热温升试验中环境温度的影响。进一步地,提出改进的喷射混凝土水化度计算模型,通过引入等效龄期影响因子考虑了速凝剂对喷射混凝土早龄期水化加速作用的影响。试验和理论研究结果表明:使用有碱速凝剂和无碱速凝剂均可显著加速喷射混凝土早龄期水化进程,但无碱速凝剂对后期水化影响较小,而有碱速凝剂对后期水化影响较大;引入等效龄期后,喷射混凝土水化度发展历程呈现两阶段模式,即快速发展期和平稳期。所提出的适用于喷射混凝土的水化度计算模型充分考虑了速凝剂的使用对喷射混凝土早龄期水化的加速作用,尤其对喷射混凝土早龄期水化度的模拟计算结果更为准确。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王家赫
关键词:  喷射混凝土  水化度  模型计算  绝热温升  速凝剂    
Abstract: In this work, shotcrete was taken as the research object, and the relationship between the core temperature rise and the curing age of shotcrete under the adiabatic state was obtained by the adiabatic temperature rise test with different kinds and different amounts of liquid accelerators. By introducing the concept of equivalent age, the relationship between the hydration degree of shotcrete and the equivalent age was calculated, and the influence of environment temperature in adiabatic temperature rise test was eliminated. An improved calculation model of hydration degree of shotcrete was proposed. The effect of accelerator on the early age hydration of shotcrete was considered by introducing the equivalent age acceleration factor. The experimental and theoretical research results show that the hydration process of shotcrete at early age can be significantly improved, whether alkaline or alkali-free accelerator is used. However, the alkali-free accelerator make little difference in the later hydration, while the alkaline accelerator does obviously. After the introduction of equivalent age, the development process of the hydration degree of shotcrete presents a two-stage model, namely the rapid development period and the stable period. The proposed model for calculating the hydration degree of shotcrete fully considers the accelerating effect of accelerator on the early age hydration of shotcrete, especially the more accurate simulation calculation of the early age hydration degree of shotcrete.
Key words:  shotcrete    degree of hydration    calculation model    adiabatic temperature rise test    accelerator
发布日期:  2022-12-09
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51908550)
通讯作者:  *wangjiahe13@tsinghua.org.cn   
作者简介:  王家赫,中国铁道科学研究院集团有限公司铁道建筑研究所副研究员。2018年清华大学土木工程系博士毕业工作至今。主持国家自然科学基金项目等科研项目3项。目前主要从事混凝土材料、胶凝材料水化机理等方面的研究工作。发表论文30余篇,包括Cement and Concrete Composites、Construction and Building Materials、Drying Technology、Magazine of Concrete Research等。
引用本文:    
王家赫. 喷射混凝土水化度的试验与理论模型研究[J]. 材料导报, 2022, 36(23): 21030064-5.
WANG Jiahe. Experimental and Theoretical Study on Cement Hydration Degree of Shotcrete. Materials Reports, 2022, 36(23): 21030064-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030064  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21030064
1 Oh B H, Cha S W. ACI Materials Journal, 2003, 100(5), 361.
2 Di Luzio G, Cusatis G. Cement and Concrete Composites, 2009, 31(5), 301.
3 Han Y, Zhang J, Luosun Y, et al. Construction and Building Materials, 2014, 61, 41.
4 Wang J H. Studies on humidity field and shrinkage stress of ordinary and internally cured concrete. Ph.D.Thesis, Tsinghua University, China, 2018 (in Chinese).
王家赫. 普通与内养护混凝土湿度场及收缩应力研究. 博士学位论文, 清华大学, 2018.
5 Malmgren L, Nordlund E. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(4), 538.
6 Salvador R P, Cavalaro S H P, Cincotto M A, et al. Cement and Concrete Research, 2016, 89, 230.
7 Salvador R P, Cavalaro S H P, Monte R, et al. Cement and Concrete Composites, 2017, 79, 117.
8 Maltese C, Pistolesi C, Bravo A, et al. Advances in Cement Research, 2011, 23(6), 277.
9 Shanahan N, Sedaghat A, Zayed A. Cement and Concrete Composites, 2016, 73, 226.
10 Han Y D. Studies and Controls on Shrinkage of Modern Concrete. Ph.D. Thesis, Tsinghua University, China, 2014 (in Chinese).
韩宇栋. 现代混凝土收缩调控研究. 博士学位论文, 清华大学, 2014.
11 Parrotta L J, Geiker M, Gutteridgea W A, et al. Cement and Concrete Research, 1990, 20(6), 919.
12 Martinelli E, Koenders E A B, Caggiano A. Cement and Concrete Composites, 2013, 40, 48.
13 Pang X, Bentz D P, Meyer C, et al. Cement and Concrete Composites, 2013, 39, 23.
14 Jiang W, De Schutter G, Yuan Y. Cement and Concrete Composites, 2014, 48, 83.
15 Bogue R H. The chemical of portland cement, Reinhold Publishing Corp., New York, 1947.
16 Zhang J, Han Y D, Han J G, Wang Z B. Magazine of Concrete Research, 2014, 66(12), 603.
17 Maekawa K., Ishida T. and Kishi T. Multi-scale modeling of concrete structures,Taylor & Francis, London, 2009.
18 Schindler A K, Folliard K J. ACI Materials Journal, 2005, 102(1), 24.
19 Carino N J, Lew H S. In: Proceedings of the 2001 Structures Congress & Exposition. Washington D C, America, 2001, pp.1.
20 Geert D S. Cement and Concrete Composites, 2004, 26(5),437.
21 Kjellsen K O, Detwiler R J. ACI Materials Journal, 1993, 90(3), 220.
22 Kim J K. Cement and Concrete Research, 2001, 31(2),217.
23 Pane I, Hansen W. ACI Materials Journal, 2002, 99(6),534.
[1] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[2] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[3] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[4] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[5] 王家滨, 王斌, 张凯峰, 李恒. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061.
[6] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[7] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[8] 王家滨, 牛荻涛, 何晖. 多因素作用衬砌喷射混凝土中性化及预测模型[J]. 材料导报, 2019, 33(24): 4078-4085.
[9] 王家滨, 牛荻涛. 盐湖卤水侵蚀喷射混凝土衬砌损伤演化[J]. 材料导报, 2019, 33(20): 3426-3435.
[10] 陈超, 孙振平. 硅灰对掺有无碱速凝剂水泥浆体性能的影响[J]. 材料导报, 2019, 33(14): 2348-2353.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed