Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1695-1700    https://doi.org/10.11896/j.issn.1005-023X.2018.10.024
  材料研究 |
大孔/介孔多级孔SiO2的制备及其在固定化脂肪酶中的应用
李笑迎,白文静,陶 凯,梁云霄
宁波大学材料科学与化学工程学院,新型功能材料及其制备科学国家重点实验室培育基地,宁波 315211
Preparation of Hierarchical Macroporous/Mesoporous Silica and Its Application in Lipase Immobilization
LI Xiaoying, BAI Wenjing, TAO Kai, LIANG Yunxiao
State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211
下载:  全 文 ( PDF ) ( 4830KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以具有三维骨架结构的环氧树脂大孔聚合物为模板,制备具有毫米级尺寸的大孔/介孔多级孔SiO2。应用SEM、MIP、FTIR和N2吸附-脱附法对材料孔道结构和表面性质进行表征。采用吸附法固定褶皱假丝酵母脂肪酶(CRL),研究CRL初始浓度、pH值及固定化时间对脂肪酶固定化的影响,对比研究了游离脂肪酶和固定化脂肪酶的酶学性质。结果表明,大孔/介孔SiO2具有三维连续贯通的大孔孔道,孔壁由连续的SiO2纳米薄膜构筑而成且表面存在丰富的介孔,比表面积为75.1 m2/g,孔隙率为92.3%;在CRL浓度为0.6 mg/mL、pH值为8.0、固定化时间为10 h时,固定化酶酶活达到4 825 U/g。与游离脂肪酶相比,固定化脂肪酶的pH稳定性、热稳定性和储存稳定性明显提高,连续使用8次后的酶活为初始酶活的68%。利用环氧树脂大孔聚合物模板制备的大孔/介孔多级孔SiO2在固定化酶方面具有良好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李笑迎
白文静
陶 凯
梁云霄
关键词:  二氧化硅  大孔/介孔  多级孔  固定化酶  褶皱假丝酵母脂肪酶    
Abstract: Millimeter-sized hierarchical macroporous/mesoporous silica was prepared by using an epoxy resin macroporous polymer with three-dimensional (3D) skeletal structure as template. Pore structures and surface properties of the as-prepared materials were characterized by SEM, MIP, FTIR and N2 adsorption-desorption. Candida rugosa lipase (CRL) was immobilized on the macroporous/mesoporous silica by adsorption method. The effects of the initial CRL concentration, pH and immobilizing time on lipase immobilization were investigated, and the properties of free and immobilized lipase were studied. The results demonstrated that the macroporous/mesoporous silica had 3D continuous pass-through macroporous structure; its pore wall was constructed by continuous silica nano-film and had abundant mesopores. The specific surface area and porosity are 75.1 m2/g and 92.3%, respectively. The activity of immobilized lipase reaches 4 825 U/g under conditions of initial CRL concentration 0.6 mg/mL, pH of 8.0 and immobilizing time of 10 h. Compared with free CRL, the pH, thermal and storage stabilities of immobilized lipase were improved significantly. The immobilized lipase retained 68% residual activity after 8 consecutive operations. Therefore, this hierarchical macroporous/mesoporous silica was a good potential candidate for enzyme immobilization.
Key words:  silica    macroporous/mesoporous    hierarchical porous    immobilized enzyme    candida rugosa lipase
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  Q814.2  
基金资助: 浙江省公益项目(2014C31130);宁波大学王宽诚幸福基金(XKL072)
通讯作者:  梁云霄:通信作者,1965年生,博士,教授,研究方向为功能多孔材料 E-mail:liangyunxiao@nbu.edu.cn   
作者简介:  李笑迎:女,1993年生,硕士研究生,研究方向为整体型大孔二氧化硅材料固定化脂肪酶及其应用 E-mail:1798591267@qq.com
引用本文:    
李笑迎,白文静,陶 凯,梁云霄. 大孔/介孔多级孔SiO2的制备及其在固定化脂肪酶中的应用[J]. 《材料导报》期刊社, 2018, 32(10): 1695-1700.
LI Xiaoying, BAI Wenjing, TAO Kai, LIANG Yunxiao. Preparation of Hierarchical Macroporous/Mesoporous Silica and Its Application in Lipase Immobilization. Materials Reports, 2018, 32(10): 1695-1700.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.024  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1695
1 Fernandez-Lafuente R. Lipase from thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst[J]. Journal of Molecular Catalysis B: Enzymatic,2010,62(3-4):197.
2 Adlercreutz P. Immobilisation and application of lipases in organic media [J]. Chemical Society Reviews,2013,42(15):6406.
3 Narwal S K, Gupta R. Biodiesel production by transesterification using immobilized lipase [J]. Biotechnology Letters,2013,35(4):479.
4 Moayedallaie S, Mirzaei M, Paterson J. Bread improvers: Comparison of a range of lipases with a traditional emulsifier [J]. Food Chemistry,2010,122(3):495.
5 Habibi Z, Mohammadi M, Yousefi M. Enzymatic hydrolysis of racemic ibuprofen esters using rhizomucor miehei lipase immobilized on different supports [J]. Process Biochemistry,2013,48(4):669.
6 Lima L N, Oliveira G C, Rojas M J, et al. Immobilization of Pseu-domonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems [J]. Journal of Industrial Microbiology & Biotechnology,2015,42(4):523.
7 曹林秋.载体固定化酶——原理、应用和设计[M].北京:化学工业出版社,2008:1.
8 Airestrapote A, Hoyos P, Alcántara A R, et al. Covalent immobilization of Pseudomonas stutzeri lipase on a porous polymer: An efficient biocatalyst for a scalable production of enantiopure benzoin esters under sustainable conditions [J]. Organic Process Research and Development,2015,19(7):687.
9 Jia J, Yin D Z, Zhang B L, et al. Study on the immobilization of papain by macroporous resin [J]. Materials Review B:Research Papers,2013,27(11):88(in Chinese).
贾佳,尹德忠,张宝亮,等.大孔树脂固定木瓜蛋白酶的研究[J].材料导报:研究篇,2013,27(11):88.
10 Bernal C, Illanes A, Wilson L. Heterofunctional hydrophilic-hydrophobic porous silica as support for multipoint covalent immobilization of lipases: Application to lactulose palmitate synthesis [J]. Langmuir,2014,30(12):3557.
11 Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Journal of the American Chemical Society,1992,114(27):10834.
12 Zhou Z, Hartmann M. Recent progress in biocatalysis with enzymes immobilized on mesoporous hosts [J]. Topics in Catalysis,2012,55(16):1081.
13 Li Y, Liu X Z, Liang Y X. Preparation of P(GMA-co-HEMA)/SiO2 macroporous composite and its application in lipase i-mmobilization [J]. Acta Materiae Compositae Sinica,2016,33(3):635(in Chinese).
李云,刘晓贞,梁云霄.P(GMA-co-HEMA)/SiO2大孔复合材料的制备及其在固定化脂肪酶中的应用[J].复合材料学报,2016,33(3):635.
14 Bemak C, Sierra L, Mesa M. Application of hierarchical porous silica with a stable large porosity for β-Galactosidase immobilization [J]. ChemCatChem,2011,3(12):1948.
15 Miletic N, Vukocic Z, Nastasovic A, et al. Macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins-versatile immobilization supports for biocatalysts [J]. Journal of Molecular Catalysis B: Enzymatic,2009,56(4):196.
16 Li Y, Gao F, Wei W, et al. Pore size of macroporous polystyrene microspheres affects lipase immobilization [J]. Journal of Molecular Catalysis B: Enzymatic,2010,66(1-2):182.
17 Bai Wenjing, Li Yun, Cao Dali, et al. Immobilization of pseudomonas fluorescens lipase on PDA/SiO2 macroporous composite [J]. Chinese Journal of Inorganic Chemistry,2016,32(11):1973(in Chinese).
白文静,李云,曹大丽,等.PDA/SiO2大孔复合材料固定化荧光假单胞菌脂肪酶[J].无机化学学报,2016,32(11):1973.
18 Wang M, Qi W, Yu Q, et al. Cross-linking enzyme aggregates in the macropores of silica gel: A practical and efficient method for enzyme stabilization [J]. Biochemical Engineering Journal,2010,52(2-3):168.
19 Yuan Z Y, Su B L. Insights into hierarchically meso-macroporous structured materials [J]. Journal of Materials Chemistry,2006,16(7):663.
20 Li J, Li L S, Xu L. Hierarchically macro/mesoporous silica sphere: A high efficient carrier for enzyme immobilization [J]. Microporous and Mesoporous Materials,2016,231:147.
21 Kilcawley K N, Wilkinson M G, Fox P F, et al. Properties of commercial microbial proteinase preparations [J]. Food Biotechnology,2002,16(1):29.
22 Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72(s1-2):248.
23 Chen R, Li D X. Analysis of error for pore structure of porous materials measured by MIP [J]. Bulletin of The Chinese Ceramic Society,2006,25(4):198(in Chinese).
陈悦,李东旭.压汞法测定材料孔结构的误差分析[J].硅酸盐通报,2006,25(4):198.
24 Yu A M, Liang Z J, Caruso F. Enzyme multilayer-modified porous membranes as biocatalysts [J]. Chemistry of Materials,2005,17(1):171.
25 Netto C G C M, Andrade L H, Toma H E. Enantioselective tran-sesterification catalysis by candida antarctica, lipase immobilized on superparamagnetic nanoparticles [J]. Tetrahedron Asymmetry,2009,20(19):2299.26 Malinin A S, Rakhnyanskaya A A, Bacheva A V, et al. Activity of an enzyme immobilized on polyelectrolyte multilayers [J]. Polymer Science,2011,53(1):52.
27 Liu J, Guo H, Zhou Q, et al. Highly efficient enzymatic preparation for dimethyl carbonate catalyzed by lipase from penicillium expansum, immobilized on CMC-PVA film [J]. Journal of Molecular Catalysis B: Enzymatic,2013,96(12):96.
28 Wang W C, Zhou W Q, Wei W, et al. Towards a deeper understanding of the interfacial adsorption of enzyme molecules in gigapo-rous polymeric microspheres [J]. Polymers,2016,8(4):116.
29 Wu C, Zhou G, Jiang X, et al. Active biocatalysts based on candida rugosa lipase immobilized in vesicular silica [J]. Process Biochemistry,2012,47(6):953.
30 Ma H Z, Yu X W, Song C, et al. Immobilization of candida antarctica, lipase B on epoxy modified silica by sol-gel process [J]. Journal of Molecular Catalysis B: Enzymatic,2016,127:76.
31 Sun H, Li Q Y, Wang X W, et al. Rapid aqueous synthesis of mesoporous carbon and their HRP immobilization performance [J]. Acta Chimica Sinica,2013,71(4):619(in Chinese).
孙何,李群艳,王学伟,等.介孔碳的快速水相合成及对辣根过氧化物酶的固定[J].化学学报,2013,71(4):619.
32 Yuce-Dursun B, Cigil A B, Dongez D, et al. Preparation and cha-racterization of sol-gel hybrid coating films for covalent immobilization of lipase enzyme [J]. Journal of Molecular Catalysis B: Enzymatic,2016,127:18.
[1] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[2] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[3] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[4] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[5] 张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
[6] 王艳珍, 陈明鸣, 王成扬. 大倍率二氧化硅/碳复合材料的制备及电化学性能表征[J]. 《材料导报》期刊社, 2018, 32(3): 357-361.
[7] 张世堂, 赵海朝, 乔玉林. 少层石墨烯负载纳米SiO2复合材料对水润滑性能的影响[J]. 材料导报, 2018, 32(24): 4235-4239.
[8] 任曼飞, 黄国强. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23): 4067-4071.
[9] 马晓宇, 梁雨, 崔素萍, 王志宏, 王亚丽. 稻壳灰制备TiO2-SiO2复合载体脱硝催化材料[J]. 材料导报, 2018, 32(22): 3984-3988.
[10] 葛胜涛, 邓先功, 毕玉保, 王军凯, 李赛赛, 韩磊, 张海军. 多级孔材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2195-2201.
[11] 孔 慧,刘卫丽,宋志棠. 一种非球形纳米二氧化硅颗粒制备新方法[J]. 《材料导报》期刊社, 2018, 32(10): 1683-1687.
[12] 王 茹,张绍康,王高勇. 矿物外加剂对丁苯聚合物/水泥复合胶凝材料凝结硬化过程的影响及机制[J]. 《材料导报》期刊社, 2017, 31(24): 69-73.
[13] 张秀芝,刘明乐,杜笑寒,杨祥子,周宗辉. 纳米SiO2与粉煤灰协同改性水泥基材料性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 50-55.
[14] 黄婧欣, 曾楚楚, 郭明. 新型温敏网络半互穿多孔水凝胶的制备及其固定化酶的研究*[J]. 《材料导报》期刊社, 2017, 31(21): 158-163.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed