Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1701-1706    https://doi.org/10.11896/j.issn.1005-023X.2018.10.025
  材料研究 |
热压制备改性石墨烯-水泥基复合材料:改善微观结构、导热性能和力学性能
吴其胜1,陈宝锐2,诸华军1,闵治安3
1 盐城工学院材料工程学院,盐城 224051;
2 常州大学材料科学与工程学院,常州 213164;
3 北京化工大学材料科学与工程学院,北京 100029
Preparing Modified-graphene-reinforced Cement-based Composite Material by Hot-pressing Process for Microstructure, Thermal Conductivity and Mechanical Properties Amelioration
WU Qisheng1, CHEN Baorui2, ZHU Huajun1, MIN Zhian3
1 School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051;
2 School of Materials Science and Engineering, Changzhou University, Changzhou 213164;
3 College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029
下载:  全 文 ( PDF ) ( 4822KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热压成型工艺制备了石墨烯-水泥基复合材料,研究了硅烷偶联剂和行星球磨时间对复合材料性能的影响。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变化红外光谱(FTIR)和氮吸附比表面积测定仪等对复合材料进行了微观分析。结果显示:当偶联剂和石墨烯掺量为1%时,复合材料导热系数和抗压强度分别达到3.132 3 W/(m·K)和54.9 MPa,相较于未使用偶联剂处理的样品,分别提高了42.07%和28.87%;球磨能提高石墨烯在复合材料中的分散性,当球磨时间为0.5 h、石墨烯掺量为1.5%、偶联剂含量为1%时,复合材料导热系数和抗压强度分别为3.687 2 W/(m·K)和57.4 MPa;微观形貌和孔结构分析表明,采用热压成型工艺制备的复合材料孔隙率更低,结构更为致密。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴其胜
陈宝锐
诸华军
闵治安
关键词:  热压成型工艺  水泥  石墨烯  孔隙率    
Abstract: Using silane coupling-agent-modified graphene, a series of graphene-reinforced cement-based composites (differing in coupling agent content and ball milling duration)were prepared by a hot-pressing process and the resultant composites’ perfor-mances were examined. X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR)and N2 absorption BET surface area analyser were employed to study microstructure of the composite. The results showed that the combination of a 1% dosage of coupling agent and a 1% dosage graphene can achieve a thermal conductivity and a compressive strength of 3.132 3 W/(m·K)and 54.9 MPa (42.07% and 28.87% higher than the composite without coupling agent modification), respectively; the ball milling can improve the dispersibility of graphene in composite, and when the milling time, graphene dosage and coupling agent dosage are 0.5 h,1.5%,1% respectively, a reinforced cement-based composite with a thermal conductivity of 3.687 2 W/(m·K)and a compressive strength of 57.4 MPa can be obtained. The microstructure and pore structure analysis showed that the composite prepared by hot-pressing process has lower porosity and more dense structure than the blank sample.
Key words:  hot pressing process    cement    graphene    porosity
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51572234;51502259);住房城乡建设部资助项目(2015-K4-007)
通讯作者:  陈宝锐:男,1992年生,硕士研究生,研究方向为复合材料 E-mail:690083131@qq.com   
作者简介:  吴其胜:男,1965年生,博士,教授,研究方向为墙体材料、保温材料 E-mail:qishengwu@ycit.cn
引用本文:    
吴其胜,陈宝锐,诸华军,闵治安. 热压制备改性石墨烯-水泥基复合材料:改善微观结构、导热性能和力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1701-1706.
WU Qisheng, CHEN Baorui, ZHU Huajun, MIN Zhian. Preparing Modified-graphene-reinforced Cement-based Composite Material by Hot-pressing Process for Microstructure, Thermal Conductivity and Mechanical Properties Amelioration. Materials Reports, 2018, 32(10): 1701-1706.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.025  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1701
1 Titchell I. Environmental degradation of macrodefect-free cements[J]. Journal of Materials Science,1991,26(5):1199.
2 Drabik M, Mojumdar S C, Galikova L. Changes of thermal events of macrodefect-free (MDF)cements due to the deterioration in the moist atmosphere [J]. Cement & Concrete Research,2001,31(31):743.
3 Zhao Q R, Cai C L, Shen G S. Preparation technology of high strength composite made with phenolic resin and high alumina cement[J]. China Concrete and Cement Products,2003(3):9(in Chinese).
赵清荣,蔡灿柳,沈贵松.酚醛树脂-高铝水泥高强复合材料配制技术[J].混凝土与水泥制品,2003(3):9.
4 Wang J D, Wu K R, Tan M H. Micrcostructure of phenol resin-high alumina cement based macro defect free composites[J]. Journal of Tongji University(Natural Science),1999(1):102(in Chinese).
王君达,吴科如,谈慕华.酚醛树脂-高铝水泥基无宏观缺陷材料的微结构[J].同济大学学报(自然科学版),1999(1):102.
5 吴其胜,朱哲誉.高强耐水型脱硫石膏板及其制备方法:中国,104944882A[P].2015-09-30.
6 Zhu Z Y, Wu Q S, Tang J, et al. Mechanical properties and microstructure of desulfurization gypsum modified by phenolic resin[J]. Journal of Materials Science & Energineering,2016,34(1):119(in Chinese).
朱哲誉,吴其胜,汤进,等.酚醛树脂改性脱硫石膏的力学性能[J].材料科学与工程学报,2016,34(1):119.
7 Jin T Y, Tian X S, Cui J, et al. Mechanical and electrical properties of carbon fiber powder-steel slag cement based composites[J]. Bulletin of the Chinses Ceramic Society,2015,34(12):3601(in Chinese).
金婷艳,田秀淑,崔健,等.碳纤维粉-钢渣水泥基复合材料的力学性能和导电性能研究[J].硅酸盐通报,2015,34(12):3601.
8 Han B, Zhang K, Yu X, et al. Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites[J]. Cement & Concrete Composites,2012,34(6):794.
9 Lv S, Liu J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J]. Construction & Building Materials,2014,64(64):231.
10 Lv S, Ma Y, Qiu C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction & Building Materials,2013,49(12):121.
11 Milev A, Wilson M, Kannangara G S K, et al. X-ray diffraction line profile analysis of nanocrystalline graphite[J]. Materials Chemistry & Physics,2008,111(2-3):346.
12 Peng L Q, Xie J H, Guo C, et al. Review of characterization methods of graphene[J]. Journal of Functional Materials,2013,44(21):3055(in Chinese).
彭黎琼,谢金花,郭超,等.石墨烯的表征方法[J].功能材料,2013,44(21):3055.
13 Xing Y L, Xu K, Liu Y H, et al. Research on the progress of high thermal conduction mechanism and heat transfer enhancement application of graphene[J]. Chemical Engineer,2015,29(5):54(in Chinese).
邢玉雷,徐克,刘艳辉,等.石墨烯高导热机理及其强化传热研究进展[J].化学工程师,2015,29(5):54.
14 Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science,2016,61:1.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[3] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[4] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[5] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[6] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[7] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[8] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[9] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[10] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[11] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[12] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[13] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[14] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[15] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed