Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1158-1164    https://doi.org/10.11896/j.issn.1005-023X.2018.07.017
  材料综述 |
无机成核剂改善聚乳酸结晶性能的研究进展
赵西坡1,2, 刘畅1,2, 徐敏1,2, 彭少贤1,2
1 湖北工业大学材料与化学工程学院,绿色轻工材料湖北省重点实验室,武汉 430068;
2 湖北工业大学绿色轻质材料与加工协同创新中心,武汉 430068
Improving the Crystallization of Poly(lactic acid)(PLA) by Adding Inorganic Nucleating Agents: a Review of the Variety
ZHAO Xipo1,2, LIU Chang1,2, XU Min1,2, PENG Shaoxian1,2
1 Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068;
2 Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068
下载:  全 文 ( PDF ) ( 1152KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚乳酸(PLA)是一种半结晶聚合物,结晶速率非常慢,在实际成型加工过程中几乎不结晶,这在很大程度上影响了聚乳酸的耐热性等性能,故可通过改善结晶性能来改善聚乳酸耐热性等性能。添加无机填料是改善聚乳酸结晶性能行之有效的途径。本文主要介绍了以无机填料为成核剂,将其与PLA共混制备结晶性能优良的复合材料。无机成核剂分散在聚乳酸基体中,成为成核位点,增加成核密度;分子间作用力、分子链较高的取向程度以及较高的结晶度使材料的熔融焓增大、熔融熵减小,从而改善PLA的耐热性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵西坡
刘畅
徐敏
彭少贤
关键词:  聚乳酸  无机成核剂  结晶性能  共混改性    
Abstract: As a semi-crystalline polymer, polylactic acid (PLA) has a excruciatingly low crystallization rate, which makes PLA crystallize negligibly during the forming process, and consequently to a large extent attenuates the product’s heat resistance and other properties. Hence the shortcoming mentioned above can be overcome by improving PLA’s crystallization, to which the addition of inorganic fillers is an effective approach. This paper aims to summarize the preparation of variety of composite materials with excellent crystallization performances by blending PLA with different types of inorganic nucleating agent fillers. The inorganic nucleating agent dispersed in the PLA matrix act as a nucleation site to increase the nucleation density. The molecular interaction force, the high orientation of the molecular chain, and the satisfied crystallinity lead to the increment of melting enthalpy and the decline of melting entropy, and thereby benefiting the PLA’S heat resistance.
Key words:  polylactic acid (PLA)    inorganic nucleating agent    crystallizability    blending modification
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TQ327.9  
基金资助: 国家自然科学基金(51273060);国家级大学生创新创业训练计划项目-创新训练项目
通讯作者:  彭少贤:通信作者,男,1960年生,教授,硕士研究生导师,主要从事多相多组分环境友好高分子材料方面的研究 E-mail:psxbb@126.com   
作者简介:  赵西坡:男,1982年生,博士,副教授,硕士研究生导师,主要从事多相多组分环境友好高分子材料方面的研究 E-mail:xpzhao123@163.com
引用本文:    
赵西坡, 刘畅, 徐敏, 彭少贤. 无机成核剂改善聚乳酸结晶性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1158-1164.
ZHAO Xipo, LIU Chang, XU Min, PENG Shaoxian. Improving the Crystallization of Poly(lactic acid)(PLA) by Adding Inorganic Nucleating Agents: a Review of the Variety. Materials Reports, 2018, 32(7): 1158-1164.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.017  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1158
1 Ray S S,Yamada K, Okamoto M, et al. New polylactide/layered si-licate nanocomposites,4. Structure, properties and biodegradability[J].Composite Interfaces,2003,10(4-5):435.
2 Lewitus D, McCarthy S, Ophir A, et al. The effect of nanoclays on the properties of PLLA-modified polymers part 1:Mechanical and thermal properties[J].Journal of Polymers and the Enviroment,2006,14:171.
3 Lasprissa A J R, Martinez G A R, Lunelli B H, et al. Polylactic acid synthesis for application in biomedical devices—A review[J].Biotechnology Advances,2012,30:321.
4 Rasal R M, Janorkar A V, Hirt D E. Poly(lactic acid) modifications[J].Progress in Polymer Science,2010,35:338.
5 Li H, Huneault M A. Effect of nucleation and plasticization on the crystallization of poly(lactic acid)[J].Polymer,2007,48(23):6855.
6 Kolstad J J. Crystallization kinetics of poly(L-lactide-co-me-so-lactide)[J].Journal of Applied Polymer Science,1996,62(7):1079.
7 Shakoor A, Thomas N L, et al. Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites[J].Polymer Engineering and Science,2014,54(1):64.
8 Wu S, Liu W, Wang Q S, et al. Effect of the particle size of talcum powder on the crystallization behavior and mechanical properties of poly(lactic acid) (PLA)[J].Plastic Packing,2012,22(4):10(in Chinese).
吴爽,刘伟,王青松,等.滑石粉粒径对聚乳酸结晶行为和力学性能的影响[J].塑料包装,2012,22(4):10.
9 Nawadon P, Sirijutaratana C, Sarawut P, et al. Influence of talc particle size and content on crystallization behavior, mechanical properties and morphology of poly(lactic acid)[J].Polymer Bulletin,2014,71:1947.
10Yu F, Liu T, Zhao X, et al. Effects of talc on the mechanical and thermal properties of polylactide[J].Journal of Applied Polymer Science,2012,125(s2):E99.
11Michel A H. Effect of nucleation and plasticization of poly(lactic acid)[J].Polymer,2007,48(23):6855.
12Xu D, Zhou M, Qian X, et al. The research of isothermal crystallization of poly(lactic acid)(PLA)[J].Plastic Additives,2012(3):38(in Chinese).
徐栋,周密,钱欣,等.聚乳酸的等温结晶研究[J].塑料助剂,2012(3):38.
13 Zhou G X, Li B J, Zhang X, et al. Effect of the synergistic effect of talc powder and PEG on the PLA crystalline[J].Application of Mo-dern Plastics Processing,2014,26(1):41(in Chinese).
邹国享,李炳健,张鑫,等.滑石粉与PEG的协同效应对PLA结晶性的影响[J].现代塑料加工应用,2014,26(1):41.
14 Sun J L, Zhen W J. Effect of talcum powder, composite filler of zinc oxide column brace organic soap stone on the crystallization and performance of poly(lactic acid) (PLA)[J].China Plastic,2014,28(11):31(in Chinese).
孙金陆,甄卫军.滑石粉、氧化锌柱撑有机皂石复合填料对聚乳酸结晶及性能的影响[J].中国塑料,2014,28(11):31.
15 Ogata N, Jimenez G, Kawai H, et al. Structure and thermal/mechanical properties of poly (l-lactide)-clay blend[J].Journal of Polymer Science:Part B:Polymer Physics,1997,35(2):389.
16 Sotirios I M, Ioannis Z, Costas P. Nanostructure vs. microstructure: Morphological and thermomechanical characterization of poly(L-lactic acid)/layered silicate hybrids[J].European Polymer Journal,2007,43:2191.
17 Ray S S, Yamada K, Okamoto M, et al. New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired pro-perties[J].Polymer,2003,44:6633.
18 Pluta M, Jeszka J K, Boiteux G. Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties[J].European Polymer Journal,2007,43:2819.
19 Zhang Y X, Wang X G, Wang X Y, et al. Contrast research of three kinds of PLA/OMLS nanocomposite on structure, crystallization behavior and mechanical properties[J].China Plastic,2016,30(1):68(in Chinese).
张玉霞,王星光,王翔宇,等.3种PLA/OMLS纳米复合材料的结构、结晶行为与力学性能的对比研究[J].中国塑料,2016,30(1):68.
20Li M Y, Zeng W, Zhen Z Y, et al. Effect of organic bentonite and annealing on the crystallization and heat-resistant properties of PLA[J].Plastic Science and Technology,2016(6):57(in Chinese).
李梦影,曾维,甄智勇,等.有机膨润土和退火对PLA结晶及耐热性能的影响[J].塑料科技,2016(6):57.
21Zaldua N, Mugica A, Zubitur M, et al. The role of PLLA-g-montmorillonite nanohybrids in the acceleration of the crystallization rate of a commercial PLA[J].Crystengcomm,2016,18(48):9334.
22Nuzzo A, Coiai S, Carroccio S C, et al. Heat-resistant fully bio-based nanocomposite blends based on poly(lactic acid)[J].Macromolecular Materials and Engineering,2014,299(1):31.
23 Gu J H, Qiao J X, Zhang X, et al. Effect of an alkalized-modified halloysite on PLA crystallization morphology, mechanical, and thermal properties of PLA/halloysite nanocomposites[J].Journal of Applied Polymer Science,2016,133(48):44272.
24 Prashantha K, Lecouvet B, Sclavons M, et al.Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mecha-nical properties as a function of halloysite treatment[J].Journal of Applied Polymer Science,2012,128(3):1895.
25 Wang G X,Dong J T,Fang Z Y,et al. Effect of nano bump on the crystallization behavior of poly(lactic acid)(PLA)[J].Fudan Journal:Natural Science Edition,2014,53(2):215(in Chinese).
王共喜,董建廷,范仲勇,等.纳米凹凸棒对聚乳酸结晶行为的影响[J].复旦学报(自然科学版),2014,53(2):215.
26 Zhang Y,Xu J,Guo B H,et al. The structure and properties of the nanocomposites of polylactic acid/concave-convex rod[J].Acta Polymerica Sinica,2012(1):83(in Chinese).
章越,徐军,郭宝华,等.聚乳酸/凹凸棒纳米复合材料的结构与性能[J].高分子学报,2012(1):83.
27 Wu D F,Wu L,Wu L F,et al. Rheology and thermal stability of polylactide/clay nanocomposites[J].Polymer Degradation and Stabi-lity,2006,91(12):3149.
28 Liu L,Jiang Y M. Effect of concave-convex rod of clay on the crystallization properties and thermal stability of poly (lactic acid) (PLA)[J].Acta Materiae Compositae Sinica,2013,30(2):75(in Chinese).
刘莉,蒋玉梅.凹凸棒黏土对聚乳酸结晶性能和热稳定性能的影响[J].复合材料学报,2013,30(2):75.
29 Yu Z Y, Yin J B, Yan S F, et al. Biodegradable poly (ε-caprolactone)-montmorillonite nanocomposites: Preparation and characte-rization[J].Polymer,2007,48(21):6439.
30Papirer E, Lacroix R, Donnet J B. Chemical modification and surface properties of carbon black[J].Carbon,1996,34(12):1521.
31Tsubokawa N. Functionalization of carbon material by surface graf-ting of polymers[J].Progress in Polymer Science,1992,17(3):417.
32Su Z Z, Fang L H, Lin M S, et al. Effect of heterogeneous nucleation of the modified carbon black on polylactic acid (PLA)[J].Petrochemical Technology,2014,43(3):331(in Chinese).
苏志忠,方丽华,林明穗,等.改性炭黑对聚乳酸结晶的异相成核作用[J].石油化工,2014,43(3):331.
33 Kang I, Heung Y Y, Kim J H. Introduction to carbon nanotube and nanofiber smart materials[J].Composites Part B:Engineering,2006,37(6):382.
34 Zhao C, Hu G, Justice R, et al. Synthesis and characterization of multiwalled carbon nanotube via in situ polymerization[J].Polymer,2005,46(14):5125.
35 Wang S Y, Shi J, Zheng L Y. Preparation and performance of carbon nanotubes/PLA composite materials[J].Acta Materiae Compositae Sinica,2012,29(6):50(in Chinese).
王劭妤,石坚,郑来云.碳纳米管/PLA复合材料制备及性能[J].复合材料学报,2012,29(6):50.
36 Chrissafis K. Detail kinetic analysis of the therhermal decomposition of PLA with oxidized multiwalled carbon nanotubes[J].Thermochimica Acta,2010,511(1):163.
37 Li Y L, Wang Y, Liu L, et al. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes[J].Journal Polymer Science,Part B:Polymer Physics,2009,47(3):326.
38 Shi J, Lu X P, Li H Y, et al. Cold crystallization kinetics and the spherulite morphology of SiO2-MWNTs/PLA composites[J].Acta Materiae Compositae Sinica,2015,32(3):737(in Chinese).
石坚,卢秀萍,李红月,等.SiO2-MWNTs/聚乳酸复合材料的冷结晶动力学及球晶形态[J].复合材料学报,2015,32(3):737.
39 Sang H P, Lee S G, Kim S H. Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites[J].Composites Part A,2013,46(46):11.
40Fang J B, Zhai G Q, Chen X B, et al. The temperature crystallization behavior of PLA/nano SiO2 composites[J].Plastic Science and Technology,2014,42(11):91(in Chinese).
方建波,翟光群,陈肖博,等.聚乳酸/纳米SiO2复合材料的非等温冷结晶行为[J].塑料科技,2014,42(11):91.
41Myoung S H, Im S S, Kim S H. Non-isothermal crystallization behavior of PLA/acetylated cellulose nanocrystal/silica nanocomposites[J].Polymer International,2016,65(1):115.
42Liang J Z,et al. Crystalline properties of poly(L-lactic acid) compo-sites filled with nanometer calcium carbonate[J].Composites Part:B,2013,1(45):1646.
43 Kumar M, Mohanty S, Nayak S K, et al. Effect of glycidly methacrylate(GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites[J].Bioresource Technology,2010,101:8406.
44 Du H N, Li B Q, Bi Y P, et al. Effect of four zinc oxide whisker on the crystallization behavior of polylactic acid[J].Modern Plastics Processing and Application, 2015,27(1):33(in Chinese).
杜海南,李白千,毕云鹏,等.四针状氧化锌晶须对聚乳酸结晶行为的影响[J].现代塑料加工应用,2015,27(1):33.
45 Zhang H C, et al.Preparation, characterization and properties of PLA/TiO2 nanocomposites based on a novel vane extruder[J].RSC Advances,2015,5(6):4639.
46 An Z L, Yang B, Xia R, et al. Effect of different fillers on the thermal and crystallization behavior of poly (lactic acid) (PLA) compo-sites[J].China Plastic,2015,29(1):53(in Chinese).
安足乐,杨斌,夏茹,等.不同填料对聚乳酸复合材料导热及结晶行为的影响[J].中国塑料,2015,29(1):53.
47 Kumar C R, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery[J].Advanced Drug Delivery Reviews,2011,9(63):789.
48 Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application[J].Angewandte Chemie International Edition,2007,46(8):1222.
49 Sun Y M, Jin J B, Hong F, et al. Research in thermal and crystallization properties of PLA-Fe3O4 composites[J].Journal of Ningbo University of Technology,2016,28(1):10(in Chinese).
孙亚敏,金佳斌,洪锋,等.PLA-Fe3O4复合材料的热学和结晶性能研究[J].宁波工程学院学报,2016,28(1):10.
50Hai S K, Li C L, Hu M Y, et al. The study on crystallization pro-perties and rheological properties of the composite materials of PLA/half water calcium sulfate[J].Plastics Science and Technology,2016,44(2):50(in Chinese).
海士坤,李春玲,胡梦洋,等.PLA/半水硫酸钙复合材料结晶性能和流变性能研究[J].塑料科技,2016,44(2):50.
51Li B, Qu Y M, Gui Q H, et al. Effect of β-tricalcium phosphate on the non-isothermal crystallization, melting behavior, and thermal stability of poly(L-lactic acid)[J].Applied Chemical Industry,2016,45(12):2316(in Chinese).
李波,屈一鸣,桂钱欢,等.β-磷酸三钙对聚L-乳酸非等温结晶、熔融行为和热稳定性的影响[J].应用化工,2016,45(12):2316.
52Cai Y H, Xie Y C, Zhao L S, et al. Effect of organic benzene calcium phosphate on crystallization and melting behavior of poly(L-lactic acid)[J].Journal of Functional Materials,2015,12(46):12057(in Chinese).
蔡艳华,谢云成,赵莉莎,等.有机苯磷酸钙对聚L-乳酸结晶性能和熔融行为的影响[J].功能材料,2015,12(46):12057.
53 Nagarajan V, Mohanty A K, Misra M. Crystallization behavior and morphology of polylactic acid(PLA)with aromatic sulfonate derivative[J].Journal of Applied Polymer Science,2016,133(28):43673.
54 Han Q, Wang Y, Shao C, et al. Nonisothermal crystallization kine-tics of biodegradable poly(lacticacid)/zinc phenylphosphonate composites[J].Composites Materials,2014,48(22):2737.
55 Huang K B, Xiong S, Li W, et al. Study of the impact of organic metal palladium compounds on the crystallization process of levorotatory polylactic acid (PLLA)[J].Journal of Hunan University (Na-tural Sciences),2014,41(12):68(in Chinese).
黄凯兵,熊杉,李伟,等.有机金属钯化合物对左旋聚乳酸(PLLA)结晶过程的影响研究[J].湖南大学学报(自然科学版),2014,41(12):68.
[1] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[2] 李晗, 张恒, 赵珂, 杨自强, 甘益, 秦子轩, 翟倩, 甄琪. PLA/PEG@SiO2超细纤维包装材料及其日间辐射降温性能[J]. 材料导报, 2024, 38(20): 23070234-7.
[3] 丁诗娟, 崔玲娜, 刘跃军. 拉伸成膜工艺诱导聚乳酸结晶行为的研究进展[J]. 材料导报, 2024, 38(18): 23030182-9.
[4] 吴鹏飞, 崔华帅, 朱金唐, 史贤宁, 崔宁, 李杰, 黄庆. 暂堵剂用聚乳酸/聚乙醇酸复合纤维的制备及降解性能研究[J]. 材料导报, 2024, 38(13): 22120143-6.
[5] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[6] 王洋样, 云雪艳, 周紫怡, 袁帅, 孙滔, 阿拉塔, 董同力嘎. 微相分离结构对聚乳酸薄膜性能的调控及其在巨峰葡萄保鲜中的应用[J]. 材料导报, 2023, 37(9): 21080286-10.
[7] 刘济民, 朱慧敏, 潘健, 宋力雅, 刘珊, 花亚冰, 石锐, 徐亮. 新型可生物降解的组织可黏附材料的合成与表征[J]. 材料导报, 2022, 36(3): 20120176-6.
[8] 叶小林, 许志彦, 侯泽明, 王建航, 谭芳, 张道海, 蔡晓东, 周国永, 吴中立, 宝冬梅. 聚乳酸/DOPS衍生物阻燃复合材料的非等温热降解动力学研究[J]. 材料导报, 2022, 36(19): 21090131-6.
[9] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[10] 毛龙, 谢建达, 雷永振, 范淑红, 刘跃军. 贻贝仿生构建聚乳酸多层复合薄膜及其性能[J]. 材料导报, 2021, 35(16): 16178-16183.
[11] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[12] 张通姗, 徐海萍, 徐世豪, 廖杨科, 熊维. 废弃高抗冲聚苯乙烯高值化再利用的研究进展[J]. 材料导报, 2020, 34(Z1): 557-562.
[13] 张奇锋, 王忠, 贾仕奎, 赵中国, 曹乐, 陈立贵. CNTs/PBS复合材料的制备及性能研究[J]. 材料导报, 2020, 34(20): 20152-20158.
[14] 陈康, 何啸宇, 李文豪, 吴义强, 李新功, 左迎峰. 乳酸接枝竹纤维/聚乳酸复合材料的制备与性能表征[J]. 材料导报, 2020, 34(20): 20171-20176.
[15] 赵中国, 张鑫, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 高熔体强度聚乳酸的结晶和发泡性能[J]. 材料导报, 2020, 34(20): 20182-20186.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed