Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 3076-3082    https://doi.org/10.11896/j.issn.1005-023X.2018.17.021
  高分子与聚合物基复合材料 |
竹纤维/聚乳酸可降解复合材料相容界面构建进展
李文豪, 吴义强, 李萍, 李新功, 左迎峰
中南林业科技大学材料科学与工程学院,长沙 410004
Construction of Compatible Interfaces for BF/PLA Biodegradable Composites: a Review
LI Wenhao, WU Yiqiang, LI Ping, LI Xingong, ZUO Yingfeng
College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004
下载:  全 文 ( PDF ) ( 1455KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 竹纤维/聚乳酸可降解复合材料是一种性能优越、可完全生物降解的绿色生态环保材料。在针对亲水竹纤维与疏水聚乳酸界面不相容而导致竹纤维/聚乳酸复合材料性能劣化的问题,研究者通常采用三种策略来提高其界面相容性:竹纤维改性、聚乳酸树脂改性和增容剂改性。在现有研究基础上,未来可以通过引进纳米纤维改性粒子改善复合体系的界面相容性,完善两相界面基础理论,促进更深入的界面作用及其机理研究,以推动竹纤维/聚乳酸可降解复合材料的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文豪
吴义强
李萍
李新功
左迎峰
关键词:  竹纤维  聚乳酸  复合材料  相容界面    
Abstract: Bamboo fiber/poly(lactic acid) biodegradable composite material is an environmentally friendly material which is completely biodegradable and possesses superior performance. Nevertheless, the incompatible interface between hydrophilic bamboo fiber and hydrophobic polylactic acid will deteriorate the performance of bamboo fiber/poly(lactic acid) composite material. In consi-deration of this problem, three strategies are commonly used by researchers to improve the interface compatibility, which include the modification of bamboo fiber, the modification of polylactic acid resin and the modification of compatibilizer. Based on the existing research, it is possible to ameliorate the interfacial compatibility of the composite system by introducing nanofibers modified particles. The basic theory of the two-phase interface should be completed, which will promote the further study of the interfacial interaction and mechanism, and accelerate the development of bamboo fiber/poly(lactic acid) degradable composite materials.
Key words:  bamboo fiber    poly(lactic acid)    composites    compatible interface
                    发布日期:  2018-09-19
ZTFLH:  TB332  
基金资助: 国家自然科学基金青年项目(31600460);中国博士后科学基金特别资助项目(2017T100615);中南林业科技大学大学生创新项目
通讯作者:  左迎峰: 男,1986年生,博士,副教授,主要从事生物质复合材料及胶黏剂改性研究 E-mail:zuoyf1986@163.com   
作者简介:  李文豪:男,1994年生,硕士研究生,主要从事生物质复合材料制备与改性研究 E-mail:leewh1994@163.com
引用本文:    
李文豪, 吴义强, 李萍, 李新功, 左迎峰. 竹纤维/聚乳酸可降解复合材料相容界面构建进展[J]. 材料导报, 2018, 32(17): 3076-3082.
LI Wenhao, WU Yiqiang, LI Ping, LI Xingong, ZUO Yingfeng. Construction of Compatible Interfaces for BF/PLA Biodegradable Composites: a Review. Materials Reports, 2018, 32(17): 3076-3082.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.021  或          http://www.mater-rep.com/CN/Y2018/V32/I17/3076
1 Zheng Feng, Yang Yuefei, Zhang Mingxin, et al. Preparation and properties of strontium aluminate fluorescent bamboo-plastic composites[J].Materials Review B:Research Papers,2015,29(7):45(in Chinese).
郑峰,杨越飞,张明昕,等.铝酸锶荧光竹塑复合材料的制备及性能研究[J].材料导报:研究篇,2015,29(7):45.
2 王清文,王伟宏.木塑复合材料与制品[M].北京:化学工业出版社,2007.
3 Suhem K, Matan N, Matan N, et al. Enhanced antifungal activity of michelia oil on the surface of bamboo paper packaging boxes using helium-neon (HeNe) laser and its application to brown rice snack bar[J].Food Control,2017,73:939.
4 Gurunathan T, Mohanty S, Nayak S K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives[J].Composites Part A,2015,77:1.
5 Zheng Xuan, Hou Yuan Jing, Gong Chunli, et al. Research progress of water-resistant thermoplastic starch-based biodegradable compo-sites[J].Materials Review,2016,30(S2):389(in Chinese).
郑譞,侯袁婧,龚春丽,等.耐水型热塑性淀粉基生物降解复合材料的研究进展[J].材料导报,2016,30(S2):389.
6 Chen Fuming, Wang Ge, Cheng Haitao, et al. Research and deve-lopment of a new type of bamboo fiber composites[J].Journal of Northeast Forestry University,2016,44(02):80(in Chinese).
陈复明,王戈,程海涛,等.新型竹纤维复合材料的研发[J].东北林业大学学报,2016,44(02):80.
7 Jiang Jianxin, Yang Zhongkai, Zhu Liwei, et al. Study on structure and properties of bamboo fibers[J].Journal of Beijing Forestry University,2008,30(1):128(in Chinese).
蒋建新,杨中开,朱莉伟,等.竹纤维结构及其性能研究[J].北京林业大学学报,2008,30(1):128.
8 Pan Wenjing, Bai Zhenhui, Su Tingting, et al. Research progress on modification of biodegradable plastic polylactic acid (PLA)[J].Journal of Applied Chemical Industry,2017,46(5):977(in Chinese).
潘文静,白桢慧,苏婷婷,等.生物降解塑料聚乳酸(PLA)的改性研究进展[J].应用化工,2017,46(5):977.
9 Zhou Chengjun, Shi Qingfeng, Guo Wenhong, et al. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA[J].ACS Applied Materials & Interfaces,2013,5(9):3847.
10 Bastioli C. Global Status of the production of biobased packaging materials[J].Starch/Stärke,2015,53(8):351.
11 Martin O, Avérous L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems[J].Polymer,2001,42(14):6209.
12 Abdul Khalil H P, Davoudpour Y, Islam M N, et al. Production and modification of nanofibrillated cellulose using various mechanical processes: A review[J].Carbohydrate Polymers,2014,99(1):649.
13 Jacob J M, Anjiwala R D. Recent developments in chemical modification and characterization of natural fiber-reinforced composites[J].Polymer Composites,2008,29(2):187.
14 Cicala G, Cristaldi G, Recca G, et al. Composites based on natural fibre fabrics[M].Woven Fabric Engineering. InTech,2007:317.
15 Zafeiropoulos N E, Williams D R, Baillie C A, et al. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments[J].Composites Part A: Applied Science & Manufactu-ring,2002,33(8):1083.
16 Abdullah M Z, Dan-Mallam Y, Yusoff P S M. Effect of environmental degradation on mechanical properties of kenaf/polyethylene terephthalate fiber reinforced polyoxymethylene hybrid composite[J].Advances in Materials Science and Engineering,2013,48:577.
17 Pickering K L, Efendy M G A, Le T M. A review of recent developments in natural fibre composites and their mechanical performance[J].Composites Part A: Applied Science and Manufacturing,2016,83:98.
18 Mokhothu T H, John M J. Review on hygroscopic aging of cellulose fibres and their biocomposites[J].Carbohydrate Polymers,2015,131:337.
19 Zhang Qi, Shi Longmin, Nie Jun, et al. Study on poly(lactic acid)/natural fibers composites[J].Journal of Applied Polymer Science,2012,125(S2):E526.
20 Singh J, Suhag M, Dhaka A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review[J].Carbohydrate Polymers,2015,117:624.
21 Tokoro R, Vu D M, Okubo K, et al. How to improve mechanical properties of polylactic acid with bamboo fibers[J].Journal of Materials Science,2008,43(2):775.
22 Gassan J, Bledzki A K. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres[J].Composites Science & Technology,1999,59(9):1303.
23 Gassan J, Bledzki A K. Alkali treatment of jute fibers: Relationship between structure and mechanical properties[J].Journal of Applied Polymer Science,2015,71(4):623.
24 Li Xue, Tabil L G, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review[J].Journal of Polymers & the Environment,2007,15(1):25.
25 Sgriccia N, Hawley M C, Misra M. Characterization of natural fiber surfaces and natural fiber composites[J].Composites Part A: Applied Science and Manufacturing,2008,39(10):1632.
26 Mohanty A K, Drzal L T, Misra M. Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing[J].Journal of Adhesion Science & Technology,2002,16(8):999.
27 毛海良.竹纤维碱处理及其增强聚乳酸基复合材料性能表征[C]//第17届全国复合材料学术会议(智能与功能复合材料分论坛)中国航空学会.北京,2012.
28 Busfield W K, Watson G S. Free radical activity in gamma-irradiated polyethylene film, drawn tape and ultra-high-modulus fibres determined by grafting performance[J].Polymer International,2005,54(7):1047.
29 Hassan M M, Karim A, Shabnam T, et al. Effect of gamma radiation on the mechanical properties of urea-treated rice straw polypropylene composites[J].Polymer-Plastics Technology and Engineering,2012,51(10):977.
30 Li Xingong, Wu Yiqiang, Zheng Xia. A method for improving the compatibility of bamboo fiber and biodegradable plastic interface[J].Bamboo Research Papers,2009,28(2):6(in Chinese).
李新功,吴义强,郑霞.改善竹纤维与生物可降解塑料界面相容性的方法[J].竹子研究汇刊,2009,28(2):6.
31 Xu Xiaoling, Zhang Min, Jia Miaomiao, et al. Influence of bamboo fiber acylation on properties of polybutylene succinate composite[J].Materials Science and Engineering,2015,31(12):49(in Chinese).
许小玲,张敏,贾苗苗,等.竹纤维酰基化改性对聚丁二酸丁二醇酯复合材料性能的影响[J].高分子材料科学与工程,2015,31(12):49.
32 Mishra S, Misra M, Tripathy S S, et al. Graft copolymerization of acrylonitrile on chemically modified Sisal Fibers[J].Macromolecular Materials & Engineering,2001,286(2):107.
33 Plackett D, Andersen T L, Pedersen W B, et al. Biodegradable composites based on L-polylactide and jute fibres[J].Composites Science and Technology,2003,63(9):1287.
34 Plackett D. Maleated polylactide as an interfacial compatibilizer in biocomposites[J].Journal of Polymers & the Environment,2004,12(3):131.
35 Lee S H, Ohkita T, Kitagawa K. Eco-composite from poly(lactic acid) and bamboo fiber[J].Holzforschung,2004,58(5):529.
36 Lee S H, Ohkita T. Bamboo fiber (BF)-filled poly (butylenes succinate) bio-composite-effect of BF-e-MA on the properties and crystallization kinetics[J].Holzforschung,2004,58(5):537.
37 Liu Wendi. Preparation and modification of environmentally friendly plant fiber/thermosetting resin composites[D].Fuzhou:Fujian Agriculture and Forestry University,2016(in Chinese).
刘文地.环境友好植物纤维/热固性树脂复合材料的制备及改性[D].福州.福建农林大学,2016.
38 Rasal R M, Hirt D E. Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization[J].Journal of Biomedical Materials Research Part A,2009,88(4):1079.
39 Zhang Xingzhen. Enhance the toughening of polylactic acid[D].Chengdu: Sichuan University,2007(in Chinese).
张兴振.增强增韧聚乳酸研究[D].成都:四川大学,2007.
40 Liu H, Zhang J. Research progress in toughening modification of poly(lactic acid)[J].Journal of Polymer Science Part B: Polymer Phy-sics,2011,49(15):1051.
41 Wang Y N, Weng Y X, Wang L. Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites[J].Polymer Testing,2014,36:119.
42 Takayama T, Todo M, Tsuji H. Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends[J].Journal of the Mechanical Behavior of Biomedical Materials,2011,4(3):255.
43 Shibata M, Teramoto N, Inoue Y. Mechanical properties, morpho-logies, and crystallization behavior of plasticized poly (l-lactide)/poly (butylene succinate-co-l-lactate) blends[J].Polymer,2007,48(9):2768.
44 Lv Shanshan, Tan Haiyan, Zuo Yingfeng, et al. Research progress on biodegradable PLA-based composites[J].Progress in Chemical Industry,2014,33(11):2975(in Chinese).
吕闪闪,谭海彦,左迎峰,等.生物可降解聚乳酸基复合材料研究进展[J].化工进展,2014,33(11):002975.
45 Xin Zhikun, Li Ning, Zhao Qingxiang, et al. Studies on PBS/bamboo fiber composites[J].New Chemical Materials,2015,43(6):91(in Chinese).
辛治坤,李宁,赵清香,等.PBS/竹纤维复合材料的研究[J].化工新型材料,2015,43(6):91.
46 Lee S H, Wang S. Biodegradable polymers/bamboo fiber biocompo-site with bio-based coupling agent[J].Composites Part A: Applied Science & Manufacturing,2006,37(1):80.
47 Chen Qinhui, Li Xuefang, Lin Jinhuo. Effect of aluminate coupling agent on the interfacial properties of bamboo-plastic composites[J].Forest Chemistry and Industry,2009,29(1):83(in Chinese).
陈钦慧,李雪芳,林金火.铝酸酯偶联剂对竹塑复合材料界面性能的影响[J].林产化学与工业,2009,29(1):83.
48 Zuo Yingfeng, Li Wenhao, Li Ping, et al. Study on plasticization modification of bamboo fiber/polylactic acid degradable composite[J].Journal of Forestry Engineering,2018,3(1):63(in Chinese).
左迎峰,李文豪,李萍,等.竹纤维/聚乳酸可降解复合材料增塑改性[J].林业工程学报,2018,3(1):63.
49 Tang Ying, Shen Yucheng, Wu Yagang, et al. Research status and prospect of bamboo-plastic composites[J].Forestry Machinery and Woodworking Machinery,2013,(8):8(in Chinese).
汤颖,沈钰程,吴亚刚,等.竹塑复合材料研究现状及展望[J].林业机械与木工设备,2013,(8):8.
50 Mark S, Nawari O N. Bamboo fiber-reinforced composites for tall building[J].Journal of Construction and Building Material,2016,1(1):1.
51 Porras A, Maranon A. Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric[J].Composites Part B: Engineering,2012,43(7):2782.
52 Faruk O, Bledzki A K, Fink H P, et al. Progress report on natural fiber reinforced composites[J].Macromolecular Materials & Engineering,2014,299(1):9.
53 Takagi H, Kako S, Kusano K, et al. Thermal conductivity of PLA-bamboo fiber composites[J].Advanced Composite Materials,2007,16(4):377.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[15] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed