Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1752-1755    https://doi.org/10.11896/cldb.18090240
  高分子与聚合物基复合材料 |
苯基硅橡胶泡沫的制备及阻尼性能
胡洋1, 赵祺2, 芦艾1,2, 王志勇1, 沈思敏1
1 西南科技大学材料科学与工程学院,绵阳 621010
2 中国工程物理研究院化工材料研究所,绵阳 621900
Preparation and Damping Properties of Phenyl Silicone Rubber Foam
HU Yang1, ZHAO Qi2, LU Ai1,2, WANG Zhiyong1, SHEN Simin1
1 School of Materials Science and Engineering,Southwest University of Science and Technology,Mianyang 621010
2 Institute of Chemical Materials,China Academy of Engineering Physics,Mianyang 621900
下载:  全 文 ( PDF ) ( 9977KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用化学发泡法制备了苯基硅橡胶泡沫材料,探究了苯基硅橡胶硫化发泡过程的动力学,研究了苯基硅橡胶体系在引入泡沫结构后的阻尼性能。结果表明,通过调整硫化加工温度和发泡剂用量,可以制备不同密度、泡孔尺寸的苯基硅橡胶泡沫材料,泡沫材料的阻尼性能明显优于实心胶,其中,孔径约为100 μm密度ρ为0.74 g/cm3的苯基硅橡胶泡沫的有效阻尼温域比实心胶提高了47 ℃,阻尼峰值提高了14%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡洋
赵祺
芦艾
王志勇
沈思敏
关键词:  苯基  硅橡胶  泡沫  动力学  阻尼性能    
Abstract: The phenyl silicone rubber foam was prepared by chemical foaming method. The kinetics of phenyl silicone rubber in the vulcanization foaming process was investigated. The damping properties of the phenyl silicone rubber system with foam structure were studied. The phenyl silicone rubber foam with different cell and density can be prepared by adjusting the vulcanization processing temperature and the amount of foaming agent. The damping property of the foam is obviously better than that of the solid rubber. The effective damping temperature range of the phenyl silicone rubber foam with cell diameter of about 100 μm and density of 0.74 g/cm3 is 47 ℃ higher than that of the solid rubber, and the damping peak is increased by 14%.
Key words:  phenyl    silicone rubber    foam    dynamics    damping property
               出版日期:  2019-05-25      发布日期:  2019-05-16
ZTFLH:  TQ333.93  
通讯作者:  zq0611@sina.com   
作者简介:  胡洋,现就读于西南科技大学,师承芦艾老师、赵祺老师。于2017年3月至今在中国工程物理研究院化工材料研究所联合培养学习,主要从事高阻尼硅橡胶泡沫材料的研究。赵祺,于北京理工大学取得博士学位,现为中国工程物理研究院化工材料研究所副研究员,主要从事高分子材料研究工作。
引用本文:    
胡洋, 赵祺, 芦艾, 王志勇, 沈思敏. 苯基硅橡胶泡沫的制备及阻尼性能[J]. 材料导报, 2019, 33(10): 1752-1755.
HU Yang, ZHAO Qi, LU Ai, WANG Zhiyong, SHEN Simin. Preparation and Damping Properties of Phenyl Silicone Rubber Foam. Materials Reports, 2019, 33(10): 1752-1755.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090240  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1752
1 Yao S R. Means to widen the temperature range of high damping behavior by IPN formatiom, Lancaster Technology Publishing Company,US,1994.
2 Yue Y, Zhang H, Zhang Z, et al.Composites Science and Technology,2013, 86, 1.
3 Nouri N M, Saadat-Bakhsh M. Journal of Coatings Technology and Research, 2017,14(2), 477.
4 Wu Weili, Wang Jun. Silicon, 2018,10(5),1903.
5 Deepak Sethi,Ranvijai Ram, Dipak Khastgir.Polymer International, 2017, 66(9),1295.
6 Sun Q J. Silicone Material, 2005,19(6), 13(in Chinese).
孙全吉.有机硅材料,2005,19(6), 13.
7 Hujare P P, Sahasrabudhe A D.Procedia Materials Science, 2014, 5, 726.
8 Xiong X, Wang J Y, Jia H B, et al. Polymer Composites, 2013,35(8), 1466.
9 Wu C F, Otani Y, Namiki N,et al.Journal of Applied Polymer Science, 2001,82(7), 1788.
10 Wang J Y, Jia H B, Ding L F,et al.Polymers for Advanced Technologies, 2015,26(9), 1168.
11 Hujare P P, Sahasrabudhe A D.Procedia Materials Science, 2014,5, 726.
12 Tang Z H, Xie Z J, Qu L L,et al.China Rubber Industry,2007,54(10),610(in Chinese).
唐振华,谢志坚,曲亮靓,等.橡胶工业,2007,54(10),610.
13 Banhart J, Baumeister J,Weber M.Materials Science and Engineering: A, 1996,205(1-2), 221.
14 Golovin I S, Sinning H R, Arhipov I K, et al. Materials Science and Engineering: A, 2004, 370(1-2), 531.
15 Scarpa F, Pastorino P, Garelli A, et al.Physica Status Solidi (B), 2005,242(3), 681.
16 Subramaniam K, Das A, Heinrich G.Composites Science and Technology,2011,71(11), 1441.
17 Song L Y, Li Z H, Li L B, et al.RSC Advances, 2016,6(103), 101470.
18 Ghaemy M, Rostami A A, Omrani A.Polymer International, 2010, 55 (3),279.
19 Wu J R, Wang X, Huang G S,et al. Polymer,2013,54(13),3314.
20 Chang M C O, Thomas D A, Sperling L H. Journal of Applied Polymer Science, 1987,34(1), 409.
21 Wang Q, Huang G S, Yu L J, et al.The World Rubber Industry, 2008, 35(6),20(in Chinese).
王强, 黄光速, 于连江, 等.世界橡胶工业,2008, 35(6),20.
[1] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[2] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[3] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[4] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[5] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[6] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[7] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[8] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[9] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[10] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[11] 王煜烨, 汤爱涛, 潘荣剑, 潘复生. 分子动力学在镁及镁合金微观塑性变形中的应用进展[J]. 材料导报, 2019, 33(19): 3290-3297.
[12] 唐丽, 尹立孟, 王金钊, 刘成, 王学军. X80管线钢二次热循环的连续冷却转变行为及贝氏体相变动力学[J]. 材料导报, 2019, 33(18): 3119-3124.
[13] 胡俊, 任建伟, 马巍, 刘建华, 王爱国. 冲击荷载下含随机缺陷的梯度蜂窝材料的力学性能[J]. 材料导报, 2019, 33(16): 2777-2784.
[14] 蒋亮, 李佳欣, 吴婷, 杨车, 尹伟杰, 韩凤兰, 陈宇红. CaO-SiO2-FeO-MgO体系钢渣固相改质过程中的镁铁尖晶石生长机理[J]. 材料导报, 2019, 33(15): 2490-2496.
[15] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed