Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2490-2496    https://doi.org/10.11896/cldb.18080039
  材料与可持续发展(二)——材料绿色制造与加工* |
CaO-SiO2-FeO-MgO体系钢渣固相改质过程中的镁铁尖晶石生长机理
蒋亮,李佳欣,吴婷,杨车,尹伟杰,韩凤兰,陈宇红
北方民族大学材料科学与工程学院,银川 750021
Growth Mechanism of Magnesioferrite Spinel in Solid Phase Modification of CaO-SiO2-FeO-MgO System
JIANG Liang, LI Jiaxin, WU Ting, YANG Che, YIN Weijie, HAN Fenglan, CHEN Yuhong
School of Material Science and Engineering, North Minzu University, Yinchuan 750021
下载:  全 文 ( PDF ) ( 2083KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢渣是炼钢过程产生的副产品,其排放量约为钢产量的15%,钢渣的循环利用是钢铁企业亟需解决的关键问题之一。利用其成分特点,已有少量钢渣应用于冶金、工程回填、筑路、污水处理和制备微晶玻璃等领域。除以上应用外,将钢渣掺入水泥中制备钢渣水泥是一种有效且高效的制备方式,然而钢渣中难以分离的FeO相限制了其在建材领域的应用。通过氧化改质的方式可以使钢渣中FeO向强磁性Fe3O4发生转变,后者可进行磁选分离,且改质过程中无温室气体排放。针对CaO-SiO2-FeO体系钢渣的氧化改质工艺已有前人进行了相关研究,然而对更接近于实际钢渣成分的CaO-SiO2-FeO-MgO体系的研究较少。此外,钢渣氧化改质过程中的镁铁尖晶石的形核、长大机理仍需要进一步探索研究。
本工作参照某钢厂转炉钢渣的实际成分,通过氧化气氛(合成空气)下煅烧的方式对钢渣进行固相改质。借助X射线衍射(XRD)仪、背散射扫描电镜(BEI-SEM)和X射线能谱仪(EDS)对CaO-SiO2-FeO-MgO体系合成钢渣的矿物相产物进行了分析,并结合热力学计算软件(FactSage)对主要产物相生成的热力学趋势进行了研究。此外,利用综合热分析仪(TG-DSC)对镁铁尖晶石群形成的动力学机理进行了推演,并建立了对应的动力学模型。研究结果表明,随固相改质温度由1 000 ℃上升至1 150 ℃,镁铁尖晶石产量呈现先增加后减少的趋势,且在改质温度为1 100 ℃时达到极大值;镁铁尖晶石相在(311)晶面对应的衍射角度随改质温度变化发生如下变化:2θ=35.44°(1 000 ℃)→2θ=35.49°(1 050 ℃)→2θ=35.49°(1 100 ℃)→2θ=35.43°(1 150 ℃);当氧化温度由1 000 ℃升高到1 150 ℃,氧化600 s后体系中质量由351.273×10-3 mg增加至499.077×10-3 mg,氧化1 800 s后体系中质量由364.390×10-3 mg增加至535.341×10-3 mg;参照动力学机理可以将CaO-SiO2-FeO-MgO四元钢渣体系的固相改质过程分为三个阶段,即孕育阶段、化学反应阶段和扩散阶段。
由理论计算所得动力学模型与TG实验结果的热重变化趋势较为一致,借助动力学模型能够较准确地描述钢渣固相改质过程中镁铁尖晶石的形核和长大过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋亮
李佳欣
吴婷
杨车
尹伟杰
韩凤兰
陈宇红
关键词:  钢渣  热力学  动力学  磁铁矿  铁酸镁    
Abstract: teel slag is a by-product of the steelmaking process, and its yield are about 15% of steel production. The recycling of steel slag is one of the key issues that steel companies need to solve. With its composition characteristics, a small amount of steel slag has been used in metallurgy, engineering backfilling, road construction, sewage treatment and preparation of glass-ceramics. Besides, the incorporation of steel slag into cement to prepare steel slag cement is an effective and efficient way to use. However, the existence of wustite phase, which is difficult to separate in steel slag, limits its application in the field of building materials. The oxidative modification can transform the wustite in the steel slag to the ferromagnetic magnetite, and there is no greenhouse gas emission during the upgrading process. The oxidative upgrading process of CaO-SiO2-FeO system steel slag has been studied in the past, but the CaO-SiO2-FeO-MgO system which is closer to the actual steel slag composition has relatively less research. In addition, the nucleation and growth mechanism of the magnesioferrite spinel in the oxidation process still needs further exploration.
This work refers to the actual composition of the converter steel slag of a steel plant, and the solidification of the steel slag is carried out by calcination under an oxidizing atmosphere (Synthetic air). X-ray diffraction (XRD) analysis, backscattered scanning electron microscopy (BEI-SEM) and X-ray energy dispersive spectroscopy (EDS) were used to analyze the mineral phase products of CaO-SiO2-FeO-MgO system synthesis slag, combined with thermodynamics. The calculation software (FactSage 7.0) was used to study the thermodynamic trends of the main product phase formation. In addition, simultaneous thermal analyzer (TG-DSC) was carried out to study the kinetic mechanism of the formation of magnesioferrite spinel, and the corresponding kinetic model was also established. The results show that with the solid phase reforming temperature rising from 1 000 ℃ to 1 150 ℃, the yield of magnesioferrite spinel increases first and then decreases, and reaches a maximum value when the upgrading temperature is 1 100 ℃. The magnesioferrite spinel changes in the (311) crystal plane corresponding to the diffraction angle as follows: 2θ=35.44° (1 000 ℃)→2θ=35.49° (1 050 ℃)→2θ=35.49° (1 100 ℃)→2θ=35.43°(1 150 ℃). With the oxidation temperature increa-sing from 1 000 ℃ to 1 150 ℃, the weight gain of the 600 s oxidation system increases from 351.273×10-3 mg to 499.077×10-3 mg, and the weight gain of the 1 800 s oxidation system increases from 364.390×10-3 mg to 535.341×10-3 mg. According to the kinetic mechanism, the solid phase modification process of CaO-SiO2-FeO-MgO quaternary system can be divided into three stages: initial stage, chemical reaction phase and diffusion phase.
   The theoretically calculated kinetic model is well consistent with the thermogravimetric change trend of the TG experimental results. The kine-tic model can accurately describe the nucleation and growth process of the magnesium iron spinel during the solid phase reforming of steel slag.
Key words:  steel slag    thermodynamics    kinetics    magnetite    magnesioferrite
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  X756  
基金资助: 宁夏高等学校科学研究项目(NGY2018-142);宁夏科技支撑计划项目(2017EZ08);“粉体材料与特种陶瓷”重点实验室项目(1804)
作者简介:  蒋亮,北方民族大学讲师,于中国建筑材料科学研究总院获得材料学工学博士学位,在国内外学术期刊上发表论文30余篇,其中SCI/EI检索10余篇。研究工作主要围绕工业废弃物的循环利用,开展关于钢渣、镁渣和锰渣等固体废弃物中有益金属的提取及尾渣的综合利用。2016—2017年以访问学者身份进入瑞典吕勒奥工业大学(Lule University of Technology,LTU)进行交流学习,参与了瑞典“MISTRA”的“CEMENT”课题研究的相关工作,并在该项目结题后继续参与了瑞典创新署“VINOVA”的资助的中瑞合作项目“BackFillStab”和有色冶金渣循环的项目“IQ-Slag”的相关研究工作。主持和参与了包括国家自然科学基金、宁夏科技支撑项目、宁夏自然科学基金以及国际合作专项等多项科研项目。
陈宇红,北方民族大学教授,硕士研究生导师。1990年毕业于陕西师范大学化学系。其中1998—1999年到意大利都灵工业大学进行访问、合作研究。在国内外学术期刊上发表论文60余篇,申请国家发明专利10项,其中授权4项。其主要研究方向包括:超高温材料,高温物理化学。负责完成科研项目10多项,包括国家 “863”项目和国家自然科学基金项目及省部级项目。获省级科技进步奖三等奖一项。
引用本文:    
蒋亮, 李佳欣, 吴婷, 杨车, 尹伟杰, 韩凤兰, 陈宇红. CaO-SiO2-FeO-MgO体系钢渣固相改质过程中的镁铁尖晶石生长机理[J]. 材料导报, 2019, 33(15): 2490-2496.
JIANG Liang, LI Jiaxin, WU Ting, YANG Che, YIN Weijie, HAN Fenglan, CHEN Yuhong. Growth Mechanism of Magnesioferrite Spinel in Solid Phase Modification of CaO-SiO2-FeO-MgO System. Materials Reports, 2019, 33(15): 2490-2496.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080039  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2490
[1] Han F L, Wu L E. Industrial solid waste recycling in west of China, Science Press, China,2017(inChinese).韩凤兰,吴澜尔.工业固废循环利用,科学出版社,2017.
[2] China Iron and Steel Application Association Metallurgical Slag Development and Utilization Working Committee. China Scrap Steel,2017(1),47(in Chinese).中国废钢铁应用协会冶金渣开发利用工作委员会.中国废钢铁,2017(1),47.
[3] Zhang L N, Zhang L, Wang M Y, et al. Transactions of Nonferrous Metals Society of China,2005,15(4),938.
[4] Semykina A, Shatokha V, Seetharaman S. Ironmaking & steelmaking,2013,37(7),536.
[5] Semykina A, Shatokha V, Iwase M, et al. Metallurgical and Materials Transactions B,2010,41(6),1230.
[6] Semykina A, Nakano J, Sridhar S, et al. Metallurgical and Materials Transactions B,2010,41(5),940.
[7] Semykina A. Metallurgical and Materials Transactions B,2012,43(1),56.
[8] Hou X K, He N, Yuan J S. Journal of the Chinese Ceramic Society,2013,41(8),1142(in Chinese).侯新凯,贺宁,袁静舒.硅酸盐学报,2013,41(8),1142.
[9] Xue P, He D F, Xu A J, et al. Ironmaking & Steelmaking,2017,52(7),104(in Chinese).薛鹏,贺东风,徐安军,等.钢铁,2017,52(7),104.
[10] Jiang L, Bao Y W, Yang Q X, et al. Steel Research International,2017,88(11),257.
[11] Jiang L, Bao Y W, Chen Y H, et al. Materials Review B: Research Papers,2018,32(2),650.
[12] Bale C, Bélisle E, Chartrand P, et al. Calphad,2009,33(2),295.
[13] Engstr?m F, Adolfsson D, Yang Q, et al. Steel Research International,2010,81(5),362.
[14] O’neill H S C, Annersten H, Virgo D. American Mineralogist,1992,77(7),725.
[15] Antao S M, Hassan I, Parise J B. American Mineralogist,2005,90(1),219.
[16] Dieckmann R, Schmalzried H. Berichte der Bunsengesellschaft für physikalische Chemie,1977,81(3),344.
[17] Faller J G, Birchenall C E. Journal of Applied Crystallography,1970,3(6),496.
[18] Goel R, Kellogg H, Rrain J. Metallurgical and Materials Transactions B,1980,11(1),107.
[19] Keller H, Schwerdtfeger K, Petri H, et al. Metallurgical and Materials Transactions B,1982,13(2),237.
[20] Ren H J. Nonferrous metals bath smelting, Metallurgical Industry Press, China,2001(in Chinese).任鸿九.有色金属熔池熔炼,冶金工业出版社,2001.
[21] Zhang L N. Study on selective precipitation valuable constituent in copper smelting slags. Ph.D. Thesis, Northeastern University, China,2005(in Chinese).张林楠.铜渣中有价组分的选择性析出研究.博士学位论文,东北大学,2005.
[22] Turkin A, Drebushchak V, Kovalevskaya Y, et al. Journal of Thermal Analysis and Calorimetry,2008,92(3),717.
[23] Blackman L. Journal of the American Ceramic Society,1959,42(3),143.
[24] Phillips B, Muan A. Journal of the American Ceramic Society,1958,41(11),445.
[25] Yadav U, Pandey B, Das B, et al. Ironmaking & Steelmaking,2013,29(2),91.
[26] Paladino A. Journal of the American Ceramic Society,1960,43(4),183.
[27] Zhang L N, Zhang L, Wang M Y, et al. Acta Physico-Chimica Sinica,2008,24(9),1540(in Chinese).张林楠,张力,王明玉,等.物理化学学报,2008,24(9),1540.
[28] Semykina A, Nakano J, Sridhar S, et al. Metallurgical and Materials Transactions B,2011,42(6),471.
[29] Avrami M. The Journal of Chemical Physics,1939,7(12),1103.
[30] Li J, Xu A, He D, et al. International Journal of Minerals Metallurgy and Materials,2013,20(3),253.
[1] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[2] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[3] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[4] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[5] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[6] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[7] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[8] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[9] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[10] 王爱国,何懋灿,莫立武,刘开伟,李燕,周莹,孙道胜. 碳化养护钢渣制备建筑材料的研究进展[J]. 材料导报, 2019, 33(17): 2939-2948.
[11] 胡俊, 任建伟, 马巍, 刘建华, 王爱国. 冲击荷载下含随机缺陷的梯度蜂窝材料的力学性能[J]. 材料导报, 2019, 33(16): 2777-2784.
[12] 宋政骢, 米国发, 王有超, 刘晨, 历长云. W-Re二元合金弹性和热力学性质的第一性原理计算[J]. 材料导报, 2019, 33(16): 2785-2792.
[13] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[14] 王义飞, 高东强, 田普建, 任威, 刘延辉, 宋文杰, 杨艳玲, 杨光. 高铌TiAl合金中包晶α相消除的热力学及动力学分析[J]. 材料导报, 2019, 33(12): 2014-2018.
[15] 胡洋, 赵祺, 芦艾, 王志勇, 沈思敏. 苯基硅橡胶泡沫的制备及阻尼性能[J]. 材料导报, 2019, 33(10): 1752-1755.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed