Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21070259-6    https://doi.org/10.11896/cldb.21070259
  金属与金属基复合材料 |
Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究
朱艳春1,*, 邵珠彩1, 罗媛媛2, 黄志权1, 牛勇1, 秦建平1
1 太原科技大学机械工程学院,太原 030024
2 西北有色金属研究院,西安 710016
Research on the Relationship Between the Strain Rate Sensitivity Exponent, Strain Hardening Exponent and Deformation Parameters, Grain Size of Ti2AlNb Titanium Alloy
ZHU Yanchun1,*, SHAO Zhucai1, LUO Yuanyuan2, HUANG Zhiquan1, NIU Yong1, QIN Jianping1
1 School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
下载:  全 文 ( PDF ) ( 16737KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Ti2AlNb合金板材为研究对象,基于变形温度为1 273~1 423 K、应变速率为0.001~10 s-1范围内的等温恒应变速率热压缩实验,深入分析了变形参数和微观组织对应变速率敏感指数m和应变硬化指数n的影响。结果表明:Ti2AlNb合金的流动应力随变形温度的升高和应变速率的降低而减小;Ti2AlNb合金等温压缩过程中的峰值m为0.61,出现在1 323 K/0.001 s-1;当变形温度为1 273~1 323 K时,m随应变速率的增大而减小,当变形温度为1 373~1 423 K时,m随应变速率的增大而增大;当应变速率为0.001 s-1时,n随应变的增大呈现先减小后增大的趋势,而当应变速率为0.01~10 s-1时,n却呈现先增大后减小的变化趋势;Ti2AlNb合金应变硬化指数n值和应变速率敏感指数m值均随着晶粒尺寸的增大而减小;Ti2AlNb合金板材较优的加工区间为1 273~1 323 K/0.001~0.01 s-1以及1 373~1 423 K/0.1~1 s-1。这对通过工艺优化组织,进而改进Ti2AlNb合金板材的性能具有重要的理论意义和工程价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱艳春
邵珠彩
罗媛媛
黄志权
牛勇
秦建平
关键词:  Ti2AlNb合金  应变速率敏感指数  应变硬化指数  组织演变    
Abstract: The effects of deformation parameters and microstructure on the strain rate sensitivity m and strain hardening exponent n were analyzed in depth based on isothermal compression experiments of Ti2AlNb alloy plates at the deformation temperatures of 1 273—1 423 K and the strain rates in the range of 0.001—10 s-1. The results showed that the flow stress of Ti2AlNb alloy decreases with the increasing deformation temperature and decreasing strain rate. The maximum m value of 0.61 occurred at 1 323 K and a strain rate of 0.001 s-1 during the isothermal compression of Ti2AlNb alloy. Moreover, the m value decreased with the increase of strain rate in the deformation temperature range of 1 273—1 323 K. On the contrary, the m value increased with the increase of strain rate in the deformation temperature range of 1 373—1 423 K. Furthermore, the n value decreased firstly and then increased with the increase of strain at the strain rate of 0.001 s-1, but at the strain rate of 0.01—10 s-1, the n value increased firstly and then decreased with the increase of strain. In addition. the strain hardening exponent and strain rate sensitivity of Ti2AlNb alloy both decreased with the increase of grain size. Finally, the better processing windows of Ti2AlNb alloy sheet were given as 1 273—1 323 K/0.001—0.01 s-1 and 1 373—1 423 K/0.1—1 s-1. This has important theoretical significance and engineering value for to improve the properties of Ti2AlNb alloy sheet by optimizing the microstructure through the process.
Key words:  Ti2AlNb alloy    strain rate sensitivity exponent    strain hardening exponent    microstructure evolution
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TG146.2+3  
基金资助: 山西省基础研究计划项目(202203021211208);陕西省重点研发计划一般项目(2020GY-284);国家自然科学基金(52075357);太原科技大学预研项目(20198011)
通讯作者:  *朱艳春,太原科技大学副教授。2013年毕业于西北工业大学,获工学博士学位。长期从事钛合金及镁合金先进成形技术与缺陷预测研究,目前主要研究方向为镁合金及钛合金无缝管轧制理论与技术、可溶镁合金设计、钛合金开坯锻透性优化。以第一作者在国内外重要期刊发表论文20余篇,其中SCI收录10余篇,以第一发明人申报专利11项,获授权6项。lzlzyc@163.com   
引用本文:    
朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
ZHU Yanchun, SHAO Zhucai, LUO Yuanyuan, HUANG Zhiquan, NIU Yong, QIN Jianping. Research on the Relationship Between the Strain Rate Sensitivity Exponent, Strain Hardening Exponent and Deformation Parameters, Grain Size of Ti2AlNb Titanium Alloy. Materials Reports, 2023, 37(5): 21070259-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070259  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21070259
1 Jiang H T, Zhang G H, Guo W Q, et al. Advanced Engineering Materials, 2018, 20, 1800281.
2 Wang S B, Xu W C, Zong Y Y, et al. Metals-Open Access Metallurgy Journal, 2018, 8(6), 382.
3 Zhang H Y, Zhang Y R, Liang H Y, et al. Journal of Alloys and Compounds, 2020, 846, 156458.
4 Yang J L, Wang G F, Jiao X Y, et al. Journal of Alloys and Compounds, 2017, 695, 1038.
5 Zhang Q H, Chen M H, Wang H, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(3), 722.
6 Kreitcberg A, Brailovski V, Prokoshkin S, et al. Materials Science & Engineering A, 2015, 622, 21.
7 Luo J, Li M Q. Materials Science and Engineering A, 2012, 538, 156.
8 Luo J, Li M Q, Yu W X, et al. Materials & Design, 2010, 31(2), 741.
9 Yue Z W, Zhu Y C, Fan J X, et al. Material Research Express, 2019, 6(11), 1165.
10 Romhanji E, Dudukovska M, Glišić D. Journal of Materials Processing Technology, 2002, 125-126, 193
11 Antonie P, Vandeputte S, Vogt J B. Materials Science and Engineering A, 2006, 433(1), 55.
12 Semiatin S L, Seetharaman V, Weiss I. Materials Science and Engineering A, 1999, 263(2), 257.
13 Cheng L, Chang H, Tang B, et al. Journal of Alloys and Compounds, 2013, 522(1), 363.
14 Wang G, Hui S X, Ye W J, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(12), 2965.
15 Lee M, Kim S, Han H N, et al. International Journal of Mechanical Sciences, 2009, 51(11), 888.
16 Otsuka M, Tsurumaki K I, Niimura M, et al. Journal of the Japan Institute of Light Metals, 1986, 36(11), 752.
17 Guo H J. Research on the deformation behavior of magnesium alloy prepared by friction stir processing. Master's Thesis, Xi'an University of Architecture and Technology, China, 2016 (in Chinese).
郭洪举. 搅拌摩擦加工镁合金变形行为的研究. 硕士学位论文, 西安建筑科技大学, 2016.
18 Hu S H. Research on microstructure and mechanical properties and grain size effect of pure copper. Master's Thesis, Nanjing University of Science and Technology, China, 2016 (in Chinese).
胡师鹤. 纯铜的微观组织与力学性能的晶粒尺寸效应研究. 硕士学位论文, 南京理工大学, 2016.
19 Yue Z W. The research on prediction model for dynamic and static recrystallization of as-cast TC21 titanium alloy. Master's Thesis, Taiyuan University of Science and Technology, China, 2020 (in Chinese).
岳振伟. 铸态TC21钛合金动静态再结晶预测模型研究. 硕士学位论文, 太原科技大学, 2020.
20 Stüwe H P, Les P. Acta Mater, 1998, 46(18), 6375.
21 Aly E D. Journal of Materials Processing Technology, 1992, 32(1-2), 243.
[1] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[2] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[3] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[4] 吴敏, 刘健, 罗霞, 刘允中, 蔡仁烨, 徐伟, 陈晓. Al-Cu-Mg合金粉末在半固态的组织演变及晶粒粗化机制[J]. 材料导报, 2022, 36(24): 22030231-7.
[5] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[6] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[7] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[8] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[9] 刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
[10] 黄晓锋, 魏浪浪, 杨剑桥, 张乔乔, 尚文涛, 李旭娇. 半固态等温热处理对Mg-7Zn-1Cu-0.3V镁合金非枝晶组织的影响[J]. 材料导报, 2020, 34(14): 14116-14121.
[11] 何翠云, 莫文锋, 罗兵辉, 柏镇海, 张鑫. 均匀化处理对2A12铝合金组织及性能的影响[J]. 材料导报, 2020, 34(12): 12083-12087.
[12] 石晓辉, 曹祖涵, 张敏, 郭瑞鹏, 乔珺威. 基于位错密度分析的Ti-8Al-1Mo-1V钛合金片层组织在热轧及退火过程中的演变机制[J]. 材料导报, 2020, 34(12): 12101-12104.
[13] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[14] 王希靖, 魏学玲, 张亮亮. 焊后时效处理对6082-T6铝合金搅拌摩擦焊接头的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 62-65.
[15] 蒲治军,陈东杰,张奎,李兴刚,李永军,马鸣龙,石国梁,袁家伟,李蒙. 关于镁合金中长周期有序结构的研究综述*[J]. 《材料导报》期刊社, 2017, 31(7): 79-82.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed