Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 79-82    https://doi.org/10.11896/j.issn.1005-023X.2017.07.012
  材料综述 |
关于镁合金中长周期有序结构的研究综述*
蒲治军1,陈东杰2,张奎2,李兴刚2,李永军2,马鸣龙2,石国梁2,袁家伟2,李蒙2
1 中国工程物理研究院机械制造工艺研究所,绵阳 621999;
2 北京有色金属研究总院,有色金属材料制备加工国家重点实验室,北京 100088
A Review About Long-period Stacking Ordered Structure in Magnesium Alloys
PU Zhijun1, CHEN Dongjie2, ZHANG Kui2, LI Xinggang2, LI Yongjun2,MA Minglong2, SHI Guoliang2,YUAN Jiawei2,LI Meng2
1 Institute of Machinery Manufacturing Technology,China Academy of Engineering Physics,Mianyang 621999;
2 State Key Laboratory for Fabrication and Processing of Nonferrous Metals, General Research Institute for Nonferrous Metals, Beijing 100088
下载:  全 文 ( PDF ) ( 1476KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 系统地介绍了6H、10H、14H、18R、24R型LPSO结构的原子堆垛和RE、Zn的占位特点,探讨了LPSO结构的形成条件和形成机制,分析了含LPSO结构相合金的组织演变过程并概述了组织演变方面最新的研究成果,总结了含LPSO结构相镁合金的室温和高温性能的研究现状,最后对该类合金未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒲治军
陈东杰
张奎
李兴刚
李永军
马鸣龙
石国梁
袁家伟
李蒙
关键词:  镁合金  长周期有序结构  组织演变    
Abstract: This paper introduces the atom stacking and Zn and RE occupying characteristic of 6H,10H,14H,18R,24R LPSO(Long-period stacking ordered)structure, discusses the forming condition and mechanism of LPSO structure, analyzes the phase evolution in alloy containing LPSO structure and summarizes the latest research results in the organization evolution,and reviews the research status of mechanical property in room temperature and high temperature. Finally, the paper proposes several research directions of the alloy containing LPSO structure.
Key words:  magnesium alloy    long-period stacking ordered structure    microstructural evolution
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TG146.2+2  
基金资助: *国家重点基础研究发展计划课题(2013CB632202;2013CB632205);国家自然科学基金项目(51204020);青海省科技支撑计划项目(2014-GX-106A)
通讯作者:  陈东杰,男,1992年生,博士研究生,研究方向为先进镁合金材料及其制备加工E-mail:chendjie@126.com   
作者简介:  蒲治军:男,1975年生,硕士,高级工程师,研究方向为有色金属材料制备加工
引用本文:    
蒲治军,陈东杰,张奎,李兴刚,李永军,马鸣龙,石国梁,袁家伟,李蒙. 关于镁合金中长周期有序结构的研究综述*[J]. 《材料导报》期刊社, 2017, 31(7): 79-82.
PU Zhijun, CHEN Dongjie, ZHANG Kui, LI Xinggang, LI Yongjun,MA Minglong, SHI Guoliang,YUAN Jiawei,LI Meng. A Review About Long-period Stacking Ordered Structure in Magnesium Alloys. Materials Reports, 2017, 31(7): 79-82.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.012  或          http://www.mater-rep.com/CN/Y2017/V31/I7/79
1 Kawamura Y, Hayashi K, Inoue A, et al.Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa[J].Mater Trans,2001,42(7):1172.
2 Li M, Zhang K, et al. The effect of homogenization on microstructures and mechanical properties of Mg-7Gd-3Y-1Nd-xZn-0.5Zr(x=0.5, 1 and 2wt%) alloys[J]. Mater Charact,2015,109:66.
3 Li Meng. Study on the microstructures and properties of Mg-Gd-Y-Nd-Zn based alloys containing long-period stacking ordered phase[D]. Beijing: Beijing General Research Institute of Nonferrous Me-tals,2016(in Chinese).
李蒙. 含长周期有序结构相的Mg-Gd-Y-Nd-Zn系合金组织与性能研究[D]. 北京:北京有色金属研究总院,2016.
4 Lv B J, Peng J, Zhu L L, et al. The effect of 14H LPSO phase on dynamic recrystallization behavior and hot workability of Mg-2.0Zn-0.3Zr-5.8Y alloy[J]. Mater Sci Eng A,2014, 599(1):150.
5 Liu H, Feng X, Jing B, et al. Microstructures and mechanical pro-perties of Mg-2Y-xZn (x=1,2,3 at%) alloys[J]. Rare Metal Mater Eng,2014,43(3):570.
6 Shi F, Wang C, Guo X. Microstructures and properties of as-cast Mg92Zn4Y4 and Mg92Zn4Y3Gd1 alloys with LPSO phase[J]. Rare Metal Mater Eng,2015,44(7):1617.
7 Mi S B, Jin Q Q. New polytypes of long-period stacking ordered structures in Mg-Co-Y alloys[J]. Scr Mater,2013,68(8):635.
8 Kishida K, Yokobayashi H, Inui H, et al. The crystal structure of the LPSO phase of the 14H-type in the Mg-Al-Gd alloy system[J]. Intermetallics,2012,31(12):55.
9 Akihisa Inoue, Yoshihito Kawamura, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system[J]. J Mater Res, 2001,16(7):1894.
10 Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM[J]. Acta Mater,2002,50(15):3845.
11 Tang P Y, Tang B Y, Peng L M, et al. Effect of Y and Zn substitution on tensile properties of 6H-Type LPSO phase in Mg97Zn1Y2 alloy[J]. Adv Mater Res,2012,476-478:2469.
12 Tang P Y, Tang B Y, Peng L M, et al. Effect of Y and Zn substitution on elastic properties of 6H-type ABCBCB LPSO structure in Mg97Zn1Y2 alloy[J]. Mater Chem Phys,2012,131(3):634.
13 Zheng Liang, Liu Chuming, Wan Yingchun, et al. Microstructures and mechanical properties of Mg-10Gd-6Y-2Zn-0.6Zr(wt%) alloy[J]. J Alloys Compd,2011,509(35):8832.
14 Luo Z P, Zhang S Q.High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy[J].J Mater Sci Lett,2000,19(9):813.
15 Itoi T, Seimiya T, et al. Long period stacking structures observed in Mg97Zn1Y2 alloy[J]. Scr Mater,2004,51(2):107.
16 Hagihara K, Kinoshita A, Sugino Y, et al. Plastic deformation behavior of Mg89Zn4Y7 extruded alloy composed of long-period stacking ordered phase[J]. Intermetallics,2010,18(5): 1079.
17 Zhu Y M, et al. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Mater,2010,58(8):2936.
18 Liu H,Bai J,Yan K,et al.Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg-Y-Zn alloys du-ring annealing at 773 K[J]. Mater Des,2016,93:9.
19 Li Yani. Investigate of the microstructures and properties of high performance Mg-Gd-Y-Zn-Mn alloys[D]. Chongqing: Chongqing University,2014(in Chinese).
李亚妮. 高性能Mg-Gd-Y-Zn-Mn合金组织与力学性能研究[D]. 重庆:重庆大学,2014.
20 Zhu Y M, Weyland M, et al. The building block of long-period structures in Mg-RE-Zn alloys[J]. Scr Mater,2009,60(11):980.
21 Yi Jianxiong. Theory computational study of the typical precipitates of Mg-Al-Ce and Mg-Y-Zn alloys[D]. Xiangtan: Xiangtan University,2010(in Chinese).
易建雄. Mg-Al-Ce和Mg-Y-Zn合金典型沉淀相的理论计算研究[D]. 湘潭:湘潭大学, 2010.
22 Yi J X, Tang B Y, Chen P, et al. Crystal structure of the mirror symmetry 10H-type long-period stacking order phase in Mg-Y-Zn alloy[J]. J Alloys Compd,2011,509(3):669.
23 Zhu Y M, et al. Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys[J]. Acta Mater,2012,60(19):6562.
24 Kim J, Kawamura Y. Influence of rare earth elements on microstructure and mechanical properties of Mg97Zn1Y1RE1 alloys[J]. Mater Sci Eng A,2013,573(23):62.
25 Saal J E, Kirklin S, Aykol M, et al.Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD)[J]. JOM,2013, 65(11):1501.
26 Zhu Y M, Morton A J, Weyland M, et al. Characterization of planar features in Mg-Y-Zn alloys[J]. Acta Mater,2010,58(2):464.
27 Smith A. Surface, interface and stacking fault energies of magnesium from first principles calculations[J]. Surf Sci,2007,601(24):5762.
28 Kim J K, Ko W S, Sandl?bes S, et al. The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy[J]. Acta Mater,2016,112:171.
29 Liu H, Xue F, Bai J, et al. Effects of high temperature annealing on morphology of long period stacking ordered structures in as-cast and as-extruded Mg-Y-Zn alloy[J]. Acta Metall Sin,2013,49(10):1255(in Chinese).
刘欢,薛烽,白晶,等.高温退火对铸态和挤压态Mg97Y2Zn合金中长周期堆垛有序结构形态的影响[J]. 金属学报,2013,49(10):1255.
30 Fan T W, Tang B Y, Peng L M, et al. First-principles study of long-period stacking ordered like multi-stacking fault structures in pure magnesium[J]. Scr Mater,2011,64(10):942.
31 Li M, Zhang K, Du Z W, et al. Microstructure evolution and mechanical properties of Mg-7Gd-3Y-1Nd-1Zn-0.5Zr alloy[J]. Trans Nonferrous Metals Soc China,2016,26(7):1835.
32 Li M, Zhang K, Li X G, et al. Effect of Zn on the microstructure and mechanical properties of as-cast Mg-7Gd-3Y-1Nd-0.5Zr alloy[J]. Mater Sci Eng A,2015,638(10):46.
33 Yamasaki M, Nishijima M, Sasaki M, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J]. Acta Mater,2007,55(20):6798.
34 Homma T, et al. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion[J]. Scr Mater,2009,61(6):644.
35 Hagihara K, Kinoshita A, Sugino Y, et al. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy[J]. Acta Mater,2010,58(19):6282.
36 Yin D D, Wang Q D, et al. Creep behavior of Mg-11Y-5Gd-2Zn-0.5Zr (wt%) at 573 K[J]. Mater Sci Eng A,2012,546:239.
37 Yang Q, Xiao B L, Zhang Q, et al. Exceptional high-strain-rate superplasticity in Mg-Gd-Y-Zn-Zr alloy with long-period stacking ordered phase[J]. Scr Mater,2013, 69(s11-12):801.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[4] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[5] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[6] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[7] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[8] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[9] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[10] 王春明,杨牧南,黄建辉,刘位江,梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[11] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[12] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[13] 谢红梅, 蒋斌, 彭程, 潘复生. SiO2/MoS2复合纳米基润滑油在镁合金冷轧中的摩擦学性能及润滑机理[J]. 《材料导报》期刊社, 2018, 32(8): 1276-1282.
[14] 张玉, 黄晓锋, 马颖, 闫峰云, 李元东, 郝远. 添加Sm对不同尺寸Mg-6Zn-0.4Zr镁合金坯料非枝晶组织演变的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1283-1288.
[15] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed