Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23010083-6    https://doi.org/10.11896/cldb.23010083
  无机非金属及其复合材料 |
晶化制度对Mg0.6Al1.2Si1.8O6透明微晶玻璃结构与性能的影响
包镇红1, 罗薇2, 苗立锋1,*, 江伟辉1
1 景德镇陶瓷大学国家日用及建筑陶瓷工程技术研究中心,江西 景德镇 333001
2 嘉兴佳利电子有限公司,浙江 嘉兴 314000
Effects of Crystallization Schedule on Microstructure and Properties of Mg0.6Al1.2Si1.8O6 Transparent Glass-ceramics
BAO Zhenhong1, LUO Wei2, MIAO Lifeng1,*, JIANG Weihui1
1 National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, Jiangxi, China
2 Jiaxing Glead Electronics Co.,Ltd., Jiaxing 314000, Zhejiang, China
下载:  全 文 ( PDF ) ( 12289KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 MgO-Al2O3-SiO2(MAS)系统微晶玻璃具有较高的机械强度、较低的介电损耗以及良好的化学稳定性和热稳定性等优点,在电子、军事、建筑等领域表现出极大的应用价值。采用熔融法,通过控制Mg0.6Al1.2Si1.8O6固溶体晶相的析出以制备MAS透明微晶玻璃。采用XRD、SEM和UV-Vis-NIR等测试手段研究了晶化制度对微晶玻璃结构和性能的影响。结果表明:晶化温度从950 ℃升高到1 020 ℃,试样中析出Mg0.6Al1.2Si1.8O6,微晶玻璃透明;当晶化温度为1 050 ℃及更高温度时,试样中析出堇青石,微晶玻璃失透。随晶化温度的升高,玻璃发生Mg0.6Al1.2Si1.8O6向堇青石的晶相转变。与堇青石相比,Mg0.6Al1.2Si1.8O6晶相折射率更接近玻璃相折射率。晶化时间由2 h延长至10 h,微晶玻璃的晶相含量由42.9%(质量分数)提高至97.5%;晶化4~10 h的微晶玻璃中晶粒平均尺寸由17.50 μm增大至30.58 μm。随着晶化时间的延长,微晶玻璃透光率呈现缓慢下降的趋势,热膨胀系数缓慢增加,维氏硬度呈现先增大后平缓的趋势,抗折强度先增加后减小。微晶玻璃最佳晶化制度为晶化温度1 020 ℃,晶化时间8 h。最佳晶化制度下的微晶玻璃具有较好的综合性能,其可见光区的透光率为83%,热膨胀系数为3.857×10-6/℃(600 ℃),维氏硬度为10.2 GPa,抗折强度为200 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
包镇红
罗薇
苗立锋
江伟辉
关键词:  Mg0.6Al1.2Si1.8O6固溶体  晶化温度  晶化时间  透明微晶玻璃    
Abstract: MgO-Al2O3-SiO2(MAS) system glass-ceramics have the properties of high mechanical, low dielectric loss, excellent chemical stability and thermal stability, showing great application value in electron, military, architecture and other fields. MAS transparent glass-ceramics were prepared by controlling the precipitation of Mg0.6Al1.2Si1.8O6 solid solution crystalline phase by melt quenching method. Effect of crystallization schedule on the microstructure and properties of glass-ceramics was investigated by XRD, SEM, hardness meter, bending strength tester and UV-Vis-NIR. The results show that when crystallization temperature increases from 950 ℃ to 1 020 ℃, the crystalline phase of glass-ceramics is Mg0.6Al1.2Si1.8O6 solid solution, and the glass-ceramics are transparent. When crystallization temperature rises to 1 050 ℃ and higher, the crystalline phase is cordierite and the glass-ceramics are opaque. Mg0.6Al1.2Si1.8O6 phase transforms to cordierite phase when crystallization temperature increase. Compared with the cordierite, the refractive index of Mg0.6Al1.2Si1.8O6 phase is closer to that of glass phase. The crystalline phase content of glass-ceramics increases from 42.9wt% to 97.5wt% with the increase of crystallization time from 2 h to 10 h. The average grain size of glass-ceramics increases from 17.50 μm to 30.58 μm with the increase of crystallization time from 4 h to 10 h. The light transmittance of glass-ceramics slowly decreases with prolonging crystallization time. The thermal expansion coefficient slowly increases with prolonging crystallization time. The Vickers hardness increases first and then flattens, and the bending strength increases first and then decreases with prolonging crystallization time. The suitable crystallization temperature is determined as 1 020 ℃, and the suitable crystallization time is determined as 8 h. When heat-treated at optimum crystallization schedule, the glass-ceramics have the best comprehensive properties, which have light transmittance of 83% in visible light region, thermal expansion coefficient of 3.857×10-6/℃(600 ℃), Vickers hardness of 10.2 GPa, and bending strength of 200 MPa.
Key words:  Mg0.6Al1.2Si1.8O6 solid solution    crystallization temperature    crystallization time    transparent glass-ceramics
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TQ171  
基金资助: 国家自然科学基金(52262008);江西省自然科学基金(20212BAB204035);江西省高校人文社科重点研究基地项目(JD21082);江西省教育厅科学技术研究项目(GJJ201325); 江西省重点研发项目(20224BBE51050)
通讯作者:  *苗立锋,景德镇陶瓷大学材料科学与工程学院教授级高工、硕士研究生导师。2004年景德镇陶瓷大学热能与动力工程专业本科毕业,2007年景德镇陶瓷大学材料学专业硕士毕业后到景德镇陶瓷大学工作至今,2021年景德镇陶瓷大学材料科学与工程专业博士毕业。目前主要从事传统陶瓷材料的研究工作。发表论文20余篇,获授权发明专利10余项。mlf0624@163.com   
作者简介:  包镇红,景德镇陶瓷大学材料科学与工程学院副教授、硕士研究生导师。2004年景德镇陶瓷大学无机非金属材料专业本科毕业,2007年景德镇陶瓷大学材料学专业硕士毕业后到景德镇陶瓷大学工作至今,2019年景德镇陶瓷大学材料科学与工程专业博士毕业。目前主要从事陶瓷材料、微晶玻璃等方面的研究工作。发表论文20余篇,包括Ceramics International、《硅酸盐学报》《材料导报》等,获授权发明专利10余项。
引用本文:    
包镇红, 罗薇, 苗立锋, 江伟辉. 晶化制度对Mg0.6Al1.2Si1.8O6透明微晶玻璃结构与性能的影响[J]. 材料导报, 2024, 38(13): 23010083-6.
BAO Zhenhong, LUO Wei, MIAO Lifeng, JIANG Weihui. Effects of Crystallization Schedule on Microstructure and Properties of Mg0.6Al1.2Si1.8O6 Transparent Glass-ceramics. Materials Reports, 2024, 38(13): 23010083-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010083  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23010083
1 Seidel S, Dittmer M, Holand W, et al. Journal of the European Ceramic Society, 2017, 37(7), 2685.
2 Li Z, Wu J F, Song L, et al. Journal of the European Ceramic Society, 2014, 34(15), 3981.
3 Liu F, Huang X, Qu J, et al. Journal of Non-Crystalline Solids, 2018, 481, 329.
4 Bao Z H, Jiang W H, Miao L F, et al. Materials Reports, 2018, 32(24), 4253 ( in Chinese)
包镇红, 江伟辉, 苗立锋, 等. 材料导报, 2018, 32(24), 4253.
5 Luo W, Bao Z H, Jiang W H, et al. Ceramics International, 2019, 45(18), 24750.
6 Han L, Song J, Zhang Q, et al. Journal of Non-Crystalline Solids, 2018, 481, 123.
7 Borrelli N F, Mitchell A L, Smith C M. Journal of the Optical Society of America B, 2018, 35(7), 1725.
8 Benitez T, Gomez S Y, Oliveira A P N. Ceramics International, 2017, 43(16), 13031.
9 Hao X J, Hu X L, Luo Z W, et al. Ceramics International, 2015, 41(10), 14130.
10 Hao X J, Luo Z W, Hu X L, et al. Journal of Non-Crystalline Solids, 2016, 432, 265.
11 Tang W F, Zhang Q, Luo Z W, et al. Applied Physics A-Materials Science & Processing, 2018, 124(2), 191.
12 Tang L Y, Wang J, Cheng J S, et al. Journal of the Chinese Ceramic Society, 2011, 39(1), 147.
13 Fan S G, Yu M Q, Zhang L, et al. Rare Metal Materials and Engineering, 2007(S2), 322 (in Chinese).
范仕刚, 余明清, 张林, 等. 稀有金属材料与工程, 2007(S2), 322.
14 Lu A X, Hu X L, Hao X J. Materials China, 2016, 35(12), 927 ( in Chinese).
卢安贤, 胡晓林, 郝小军. 中国材料进展, 2016, 35(12), 927.
15 Gawronski A, Patzig C, Hoche T, et al. Journal of Materials Science, 2015, 50(4), 1986.
16 Beall G H, Duke D A. Journal of Materials Science, 1969, 4(4), 340.
17 Berther T, Fokin V M, Zanotto E D. Journal of Non-Crystalline Solids, 2008, 354(15-16), 1721.
18 Li J, Mei Y Z, Luo Z W, et al. The Chinese Journal of Nonferrous Metals, 2011, 21(6), 1450 (in Chinese).
李婧, 梅宇钊, 罗志伟, 等. 中国有色金属学报, 2011, 21(6), 1450.
19 Li J H, Mei Y Z, Gao C, et al. Journal of Non-Crystalline Solids, 2011, 357(7), 1736.
20 Lu A X, Hu X L, Lei Y J, et al. Ceramics International, 2014, 40(1), 11.
21 Luo W, Bao Z H, Jiang W H, et al. Journal of the Chinese Ceramic Society, 2019, 47(5), 712 (in Chinese).
罗薇, 包镇红, 江伟辉, 等. 硅酸盐学报, 2019, 47(5), 712.
22 Du Y S, Zhang H X, Chen H, et al. Materials Reports, 2015, 29(16), 120(in Chinese).
杜永胜, 张红霞, 陈华, 等. 材料导报, 2015, 29(16), 120.
23 Hu W M, Cao C. Materials Reports, 2015, 29(S1), 333 (in Chinese).
胡文明, 曹超. 材料导报, 2015, 29(S1), 333.
24 Yasukawa K, Terashi Y, Nakayama A. Journal of the American Ceramic Society, 2010, 81(11), 2978.
25 Golshan N H, Yekta B E, Marghussian V K. Optical Materials, 2012, 34(4), 596.
26 Han L, Song J, Qian Z, et al. Silicon, 2018, 10(6), 2685.
27 Shan Y, Li J Z, Deng Z Q, et al. Journal of the Chinese Ceramic Society, 1981(4), 41 (in Chinese).
单瑛, 李家治, 邓泽群, 等. 硅酸盐学报, 1981(4), 403.
[1] 王衍行, 杨鹏慧, 李现梓, 韩韬, 祖成奎. 物理钢化玻璃的研究进展[J]. 材料导报, 2024, 38(11): 23020199-8.
[2] 王衍行, 李现梓, 韩韬, 肖雷, 何坤, 祖成奎. 高强高韧玻璃的研究进展[J]. 材料导报, 2022, 36(21): 20090229-7.
[3] 王博知, 孙维义, 简韬, 张云蔚, 吴开霞, 李三雁. 协同掺杂MnO2与CeO2对钙钛矿类LaAlO3陶瓷显微结构与红外辐射性能的影响[J]. 材料导报, 2022, 36(16): 21030158-4.
[4] 崔介东, 曹欣, 石丽芬, 仲召进, 高强. 液晶显示屏用玻璃结构与性能[J]. 材料导报, 2021, 35(z2): 107-109.
[5] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[6] 崔介东, 曹欣, 王萍萍, 石丽芬, 仲召进, 赵凤阳, 高强, 李金威. 玻璃黏温曲线的全温度段拟合[J]. 材料导报, 2020, 34(Z2): 128-131.
[7] 周鹏, 赵华, 陶海征, 祖成奎, 刘永华, 石凯文, 张瑞. 硫系玻璃熔体的黏度测试方法和黏温方程[J]. 材料导报, 2019, 33(Z2): 181-188.
[8] 李保卫, 李鑫, 崔俊杰, 张宇轩, 张雪峰, 贾晓林, 欧阳顺利. 微波烧结制备玻璃陶瓷的研究进展[J]. 材料导报, 2019, 33(Z2): 189-197.
[9] 李梦萱, 刘洪波, 刘见祥, 朱明燕, 王毅. 掺杂Yb3+的氟氧化物微晶玻璃的析晶特性及发光性能[J]. 材料导报, 2019, 33(16): 2644-2647.
[10] 田清波, 李春珍, 李海文, 王玥, 吕志杰. 云母微晶玻璃复合材料的研究进展[J]. 材料导报, 2019, 33(13): 2191-2196.
[11] 彭寿, 赵凤阳, 曹欣, 单传丽. 澄清剂氧化锡对TFT-LCD基板玻璃澄清效果的影响[J]. 材料导报, 2019, 33(z1): 195-198.
[12] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[13] 耿安东, 朱永昌, 崔竹, 张浩, 竹含真, 韩勖, 霍冀川. 不同晶核剂对硼硅酸盐钙钛锆石固化体析晶行为及化学稳定性的影响[J]. 材料导报, 2018, 32(22): 3979-3983.
[14] 严子迪, 冯可芹, 陈长鸿, 税玥. La2O3对高钛高炉渣制备微晶泡沫玻璃的影响[J]. 材料导报, 2018, 32(16): 2763-2767.
[15] 张礼华,张云升,殷倩文. Li2O/K2O物质的量比对P2O5-Al2O3-BaO-Li2O-K2O磷酸盐玻璃热光性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1955-1958.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed