Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 22100284-10    https://doi.org/10.11896/cldb.22100284
  高分子与聚合物基复合材料 |
玻璃钢夹砂管涵夹砂层细观断裂数值模拟
王清洲, 孙颖晖, 薛晓, 马士宾, 肖成志*
河北工业大学土木与交通学院,天津 300401
Numerical Simulation of Mesoscopic Fracture of Sand Layer in GRPM Pipe Culvert
WANG Qingzhou, SUN Yinghui, XUE Xiao, MA Shibin, XIAO Chengzhi*
School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 27811KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高玻璃钢夹砂管中夹砂层的力学性能,增强其可设计性,借助有限元仿真软件构建代表性体积单元重现树脂夹砂层的细观结构特性,通过全域插设零厚度粘聚单元,实现复杂离散的多裂缝萌生和扩展。对夹砂层试样单轴拉伸断裂过程进行模拟,分析细观断裂损伤演化过程,探究各组分参数对夹砂层断裂力学行为的影响规律。结果表明:构建的细观粘聚断裂模型能较好地表征夹砂层复杂断裂过程,轴向拉伸变形时复合材料主裂缝的形成位置近似垂直于加载方向,伴随界面脱粘和基体内裂纹的萌生与扩展。裂纹扩展方向主要受细观颗粒分布的位置影响,提高颗粒体积分数能显著提高材料刚度;多颗粒粒径分布的增强效果优于单粒径分布,粒径越小,则增强增韧效果越好;粘聚单元的抗拉强度和断裂能的增大均能够提升模型整体抗拉强度,断裂能越大,则裂纹路径分支越少。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王清洲
孙颖晖
薛晓
马士宾
肖成志
关键词:  颗粒增强复合材料  玻璃钢夹砂管  细观仿真  裂纹扩展  粘聚单元法    
Abstract: In order to improve the mechanical properties of the sand layer in the GRPM pipe and enhance its designability, a representative volume element model was constructed to reproduce its mesoscopic structure characteristics by means of finite element simulation software, and the zero-thickness cohesive element was inserted into the model to realize the complex and discrete multi-crack initiation and expansion of the model. The uniaxial tensile fracture process of the sand layer specimen was simulated, the microscopic fracture damage evolution processwas analyzed, and the influence of each component parameter on the fracture mechanical behavior of the sand layer was explored. The research results show that cohesive fracture model can better characterize the complex fracture process of sand layer. During axial tensile deformation, the main crack of the material is approximately perpendicular to the loading direction, accompanied by interfacial debonding and cracks propagation in the matrix. The crack propagation direction is mainly affected by the position of the particle distribution, increasing its volume fraction can improve the stiffness of the material. The enhancement effect of multi-particle size distribution is better than that of single particle size distribution, the smaller the particle size, the better the reinforcement and toughening effect. The increase of the tensile strength and fracture energy of the cohesive unit can improve the overall tensile strength of the model. The larger the crack path, the simpler the crack path.
Key words:  particle reinforced composite    GRPM pipes    mesoscopic simulation    crack propagation    cohesive zone model
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TB332  
基金资助: 天津市自然科学基金 (20JCYBJC00630)
通讯作者:  *肖成志,河北工业大学土木与交通学院教授、博士研究生导师。2006年6月大连理工大学岩土工程专业博士毕业,2006年7月到河北工业大学工作至今。目前主要从事土工合成材料及其加筋土原理与数值模拟,埋地管道、软基处理和隧道工程等岩土工程方面的研究。以第一作者发表学术期刊论文30多篇,其中SCI或EI收录20篇,获得软件登记著作权2项,实用新型专利2项。czxiao@hebut.edu.cn   
作者简介:  王清洲,博士,河北工业大学土木与交通学院副教授、硕士研究生导师。主要从事道路新材料开发及应用等方面的研究,发表论文100余篇。
引用本文:    
王清洲, 孙颖晖, 薛晓, 马士宾, 肖成志. 玻璃钢夹砂管涵夹砂层细观断裂数值模拟[J]. 材料导报, 2024, 38(17): 22100284-10.
WANG Qingzhou, SUN Yinghui, XUE Xiao, MA Shibin, XIAO Chengzhi. Numerical Simulation of Mesoscopic Fracture of Sand Layer in GRPM Pipe Culvert. Materials Reports, 2024, 38(17): 22100284-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100284  或          http://www.mater-rep.com/CN/Y2024/V38/I17/22100284
1 Pan Diankun, Li Mengjue, Yan Zheng. Engineering Plastics Application, 2011, 39(10), 73 (in Chinese).
潘典坤, 李萌崛, 严正. 工程塑料应用, 2011, 39(10), 73.
2 Wang Qingzhou, Liang Xiao, Wei Lianyu, et al. Journal of Chang'an University(Natural Science Edition), 2018, 38(3), 10 (in Chinese).
王清洲, 梁筱, 魏连雨, 等. 长安大学学报(自然科学版), 2018, 38(3), 10.
3 Yang Jianming, Shi Qiang, Pan Duojun, et al. Fiberglass/Composite Materials, 2014(8), 72 (in Chinese).
杨建明, 时强, 潘多军, 等. 玻璃钢/复合材料, 2014(8), 72.
4 Zhang Jiyuan, Wei Lianyu, Zhang Guopan, et al. Fiberglass/Composite Materials, 2016(10), 56 (in Chinese).
张济源, 魏连雨, 张国盘, 等. 玻璃钢/复合材料, 2016(10), 56.
5 Wang Qingzhou, Xue Xiao, Sun Yanwen, et al. Engineering Plastics Application, 2020, 48(10), 116 (in Chinese).
王清洲, 薛晓, 孙言文, 等. 工程塑料应用, 2020, 48(10), 116.
6 Wang Qingzhou, Zhang Chaoyang, Xue Xiao, et al. Engineering Plastics Application, 2020, 48(12), 107 (in Chinese).
王清洲, 张朝阳, 薛晓, 等. 工程塑料应用, 2020, 48(12), 107.
7 Rafiee R. Composites Part B:Engineering, 2013, 45(1), 257.
8 Rafiee R. Polymer Testing, 2018, 67, 322.
9 Li Chaohong, Wang Hailong, Xu Guangxing. Journal of Central South University(Science and Technology), 2011, 42(2), 463 (in Chinese).
李朝红, 王海龙, 徐光兴. 中南大学学报(自然科学版), 2011, 42(2), 463.
10 Swati R F, Wen L, Elahi H, et al. Microsystem Technologies, 2018, 25, 747.
11 Wang Zhen, Wang Ying. Journal of Central South University (Science and Technology), 2020, 51(7), 1873 (in Chinese).
汪珍, 王莹. 中南大学学报(自然科学版), 2020, 51(7), 1873.
12 Lu Zixing. Acta Mechanica Solida Sinica, 2015 (S1), 85 (in Chinese).
卢子兴. 固体力学学报, 2015 (S1), 85.
13 Rozylo P. Composite Structures, 2021, 257, 113303.
14 Wang X E, Yang J, Liu Q F, et al. Engineering Structures, 2017, 152, 493.
15 Su Y, Ouyang Q, Zhang W, et al. Materials Science and Engineering:A, 2014, 597, 359.
16 Qi Xiaole. Finite element simulation and experimental research on machining of SiCp/Al particle reinforced composites. Master's Thesis, Tianjin Vocational and Technical Normal University, China, 2020 (in Chinese).
齐小乐. SiCp/Al颗粒增强复合材料切削加工有限元模拟及实验研究. 硕士学位论文, 天津职业技术师范大学, 2020.
17 Hao Pei. Study on nonideal interface stiffness of particle reinforced composites. Master's Thesis, Tianjin University, China, 2014 (in Chinese).
郝培. 颗粒增强复合材料非理想界面刚度的研究. 硕士学位论文, 天津大学, 2014.
18 Bai Xiaoming. Research on the macro-mechanical model of composite materials based on data mining. Ph. D. Thesis, Harbin Institute of Technology, China, 2016 (in Chinese).
白晓明. 基于数据挖掘的复合材料宏—细观力学模型研究. 博士学位论文, 哈尔滨工业大学, 2016.
19 Qing H. Materials & Design, 2013, 44, 446.
20 Schneider M. Computational Mechanics, 2017, 59(2), 247.
21 Rafiee R, Habibagahi M R. Thin-Walled Structures, 2018, 131, 347.
22 Meng Q, Wang Z. Engineering Fracture Mechanics, 2015, 142, 170.
23 Chen Yanwei, Feng Jili, Zhu Tianyu, et al. Acta Materiae Composite Sinica, 2022, 39(10), 4972 (in Chinese).
陈燕伟, 冯吉利, 朱天宇, 等. 复合材料学报, 2022, 39(10), 4972.
24 Xin Zhenyang, Miao Wencheng, Wang Yue, et al. Journal of Composite Materials, 2019, 36(6), 1471 (in Chinese).
信振洋, 苗文成, 王悦, 等. 复合材料学报, 2019, 36(6), 1471.
[1] 黄奎龙, 余刚, 方修洋, 张昊楠. 踏面匹配与初始裂纹形态交互作用下车轮多轴疲劳裂纹扩展特性[J]. 材料导报, 2024, 38(4): 22060161-5.
[2] 余宸, 田威, 王杰, 高晋峰. 砂型3D打印材料在岩体物理模型试验中的应用研究及展望[J]. 材料导报, 2024, 38(12): 22120133-9.
[3] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[4] 闵军雄, 张敏男, 戴光泽, 赵君文. 层流等离子体淬火对GCr15轴承钢的滚动接触疲劳及损伤性能的影响[J]. 材料导报, 2023, 37(2): 21060076-7.
[5] 钟颖, 邵永波, 高旭东, 罗霞飞, 朱红梅, 杨冬平. 应力比对EH36钢在海洋腐蚀环境中疲劳裂纹扩展速率的影响[J]. 材料导报, 2023, 37(19): 22050330-7.
[6] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[7] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[8] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[9] 邹田春, 李龙辉, 巨乐章, 符记, 李晔. CFRP-铝合金板单、双搭接胶接接头刚度退化机理[J]. 材料导报, 2022, 36(19): 21050092-6.
[10] 高旭东, 邵永波, 郭永健, 钟颖, 罗霞飞. 应力比对服役后X56钢腐蚀疲劳裂纹扩展速率的影响[J]. 材料导报, 2022, 36(15): 21040303-6.
[11] 周峰峦, 王存宇, 曹文全, 董瀚. 冷轧中锰钢和等温淬火-碳配分钢裂纹扩展研究[J]. 材料导报, 2021, 35(8): 8164-8168.
[12] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[13] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[14] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[15] 崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed