Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22060161-5    https://doi.org/10.11896/cldb.22060161
  金属与金属基复合材料 |
踏面匹配与初始裂纹形态交互作用下车轮多轴疲劳裂纹扩展特性
黄奎龙1, 余刚2, 方修洋1,*, 张昊楠1
1 西南交通大学机械工程学院,成都 610031
2 江西科技学院人工智能学院,南昌 330096
Multiaxial Fatigue Crack Propagation Characteristics of Wheel Under the Interaction of Tread Matching and Initial Crack Morphology
HUANG Kuilong1, YU Gang2, FANG Xiuyang1,*, ZHANG Haonan1
1 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 Artificial Intelligence Department of Jiangxi University of Technology, Nanchang 330096, China
下载:  全 文 ( PDF ) ( 9689KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地铁车辆车轮裂纹常萌生于车轮踏面及亚表面,亚表面裂纹是影响车轮寿命的关键因素之一。借助有限元仿真方法,在轮轨接触三维模型亚表面处插入初始裂纹,研究了不同轮轨匹配形式、不同初始裂纹形态对亚表面疲劳裂纹扩展特性的影响。结果显示,车轮亚表面3 mm处接触应力数值最大,在锥形、LM型、LMA型三种踏面类型中,采用LM型踏面时车轮亚表面等效应力最大,最容易发生疲劳破坏;裂纹扩展均呈现出多轴疲劳裂纹扩展特性,锥形踏面工况下裂纹的扩展速率高于其余两种踏面类型下的裂纹扩展速率;不同初始裂纹角度中,45°初始裂纹角度是最危险的角度;初始裂纹深度对裂纹的扩展路径基本无影响。本研究结果对车轮亚表面埋藏裂纹缺陷评判及剩余寿命预测有一定的工程及理论指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄奎龙
余刚
方修洋
张昊楠
关键词:  车轮  轮轨型面匹配  初始裂纹  亚表面  疲劳裂纹扩展    
Abstract: The wheel cracks of subway vehicles often initiate on the wheel tread and subsurface, and the subsurface crack is one of the key factors affecting the wheel life. In this work, the finite element simulation method was used to insert different initial cracks into the sub-surface of the three-dimensional wheel-rail contact model. The effects of different wheel-rail matching forms and different initial crack parameters on the sub-surface fatigue crack propagation characteristic is studied. The results show that the contact stress at 3 mm of the wheel sub-surface is the largest. Among the three types of tapered, LM and LMA treads, the equivalent stress of the wheel sub-surface is the largest when the LM tread is used, and the fatigue failure is most likely to occur. The crack propagation shows multiaxial fatigue crack propagation characteristics, and the crack propagation rate under the tapered tread condition is higher than that under the other two tread types. Among different initial crack angles, 45° initial crack angle is the most dangerous angle; the initial crack depth has no effect on the crack propagation path. The research results of this work have certain engineering and theoretical guiding significance for the evaluation of buried crack defects and residual life prediction of wheel sub-surface.
Key words:  wheel    wheel/rail profile matching    initial crack    sub-surface    fatigue crack propagation
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  U214  
基金资助: 国家重点研发计划(2023YFA1609200)
通讯作者:  *方修洋,西南交通大学机械工程学院讲师、硕士研究生导师。2016年3月毕业于西安交通大学,获材料科学与工程博士学位,同年入职西南交通大学机械工程学院工作至今。主要研究方向为轨道车辆结构强度及寿命评估理论、焊接结构及表面工程。以第一作者或通信作者在国际和国内学术期刊发表学术论文20余篇。fangxiuyang@home.swjtu.edu.cn   
作者简介:  黄奎龙,2021年6月于南昌大学获得工学学士学位。西南交通大学机械工程学院硕士研究生,主要研究领域为轨道车辆关键结构强度评估及其可靠性分析。
引用本文:    
黄奎龙, 余刚, 方修洋, 张昊楠. 踏面匹配与初始裂纹形态交互作用下车轮多轴疲劳裂纹扩展特性[J]. 材料导报, 2024, 38(4): 22060161-5.
HUANG Kuilong, YU Gang, FANG Xiuyang, ZHANG Haonan. Multiaxial Fatigue Crack Propagation Characteristics of Wheel Under the Interaction of Tread Matching and Initial Crack Morphology. Materials Reports, 2024, 38(4): 22060161-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060161  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22060161
1 Mai S H, Gravouil A, Nguyen-Tajan M L, et al. Engineering Fracture Mechanics, 2017, 174, 196.
2 Schilke M, Larijani N, Persson C. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37(3), 280.
3 Cannon D F, Edel K O, Grassie S L, et al. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(10), 865.
4 Zhao X, Wen Z F, Wang H Y, et al. Journal of Traffic and Transportation Engineering, 2021, 21(1), 1(in Chinese).
赵鑫, 温泽峰, 王衡禹, 等. 交通运输工程学报, 2021, 21(1), 1.
5 Cantini S, Cervello S. Wear, 2016, 366, 325.
6 Cong T, Han J M, Hong Y S, et al. Engineering Failure Analysis, 2019, 97, 556.
7 Ekberg A, Sotkovszki P. International Journal of Fatigue, 2001, 23, 29.
8 He C G, Zhou G Y, Wang J, et al. Tribology, 2014, 34(3), 256(in Chinese).
何成刚, 周桂源, 王娟, 等. 摩擦学学报, 2014, 34(3), 256.
9 Li X, Wen Z F, Jin X S. Journal of the China Railway Society, 2011, 33(3), 28(in Chinese).
李霞, 温泽峰, 金学松. 铁道学报, 2011, 33(3), 28.
10 Zhang G Z, Ren R M, Wu S, et al. China Railway Science, 2019, 40(5), 80(in Chinese).
张关震, 任瑞铭, 吴斯, 等. 中国铁道科学, 2019, 40(5), 80.
11 Miura T, Sato K, Nakamura H. Cement and Concrete Composites, 2020, 114, 103768.
12 Cao H K, Zhou Y M, Guan Q H, et al. Urban Mass Transit, 2017, 20(11), 17(in Chinese).
曹洪凯, 周业明, 关庆华, 等. 城市轨道交通研究, 2017, 20(11), 17.
13 Ekberg A, Kabo E. Wear, 2005, 258(7), 1288.
14 Bonniot T, Doquet V, Mai S H. International Journal of Fatigue, 2018, 115, 42.
15 Benuzzi D, Bormetti E, Donzella G. Theoretical and Applied Fracture Mechanics, 2003, 40(1), 55.
[1] 姚三成, 赵海, 刘学华, 江波, 邹强, 徐康. 中碳含钒车轮钢中的晶内铁素体及其对断裂韧性的影响[J]. 材料导报, 2023, 37(22): 22050092-6.
[2] 钟颖, 邵永波, 高旭东, 罗霞飞, 朱红梅, 杨冬平. 应力比对EH36钢在海洋腐蚀环境中疲劳裂纹扩展速率的影响[J]. 材料导报, 2023, 37(19): 22050330-7.
[3] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[4] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[5] 高旭东, 邵永波, 郭永健, 钟颖, 罗霞飞. 应力比对服役后X56钢腐蚀疲劳裂纹扩展速率的影响[J]. 材料导报, 2022, 36(15): 21040303-6.
[6] 吴国荣, 陈旭辉. 汽车轮毂材料轻量化与造型设计研究[J]. 材料导报, 2021, 35(19): 19181-19185.
[7] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[8] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[9] 王宇, 曾伟, 韩靖, 戴光泽, 赵君文, 徐忠宣. 氮碳共渗对ER8车轮钢高温摩擦磨损性能的影响[J]. 材料导报, 2020, 34(18): 18119-18124.
[10] 曾伟, 王少杰, 韩靖, 张雪梅, 戴光泽, 赵君文. 预腐蚀对ER8车轮钢磨损行为的影响[J]. 材料导报, 2019, 33(24): 4152-4156.
[11] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed