Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21060076-7    https://doi.org/10.11896/cldb.21060076
  金属与金属基复合材料 |
层流等离子体淬火对GCr15轴承钢的滚动接触疲劳及损伤性能的影响
闵军雄, 张敏男, 戴光泽*, 赵君文*
西南交通大学材料科学与工程学院,成都 610031
Effect of Laminar Plasma Quenching on Rolling Contact Fatigue and Damage Performance of GCr15 Bearing Steel
MIN Junxiong, ZHANG Minnan, DAI Guangze*, ZHAO Junwen*
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 5931KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高GCr15轴承钢的滚动接触疲劳(RCF)性能,使用层流等离子体淬火(LPQ)技术对GCr15轴承钢表面进行了四种不同扫描速度(350 mm/min、550 mm/min、750 mm/min、950 mm/min)的等离子体淬火实验。用MJP-30滚动接触疲劳实验机对处理前后的试样进行RCF试验。采用激光共聚焦显微镜(VK-9710)、超景深显微镜(UDM, VHX-1000C, Japan)、扫描电子显微镜分析试样组织结构、成分、微观损伤形貌,对试样进行硬度测试,分析疲劳扩展机理。结果表明:由于LPQ的冷却速率及加热速率较快,试样表面产生淬火硬化区,形成细小的隐晶马氏体组织,表层硬度增大。硬化层厚度影响RCF扩展机理,硬化层厚度越深,疲劳寿命越长,LPQ使RCF寿命延长64%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闵军雄
张敏男
戴光泽
赵君文
关键词:  层流等离子体淬火(LPQ)  GCr15轴承钢  滚动接触疲劳(RCF)  裂纹扩展    
Abstract: In order to improve the rolling contact fatigue (RCF) performance of GCr15 bearing steel, four plasma quenching experiments with different scanning speeds (350 mm/min, 550 mm/min, 750 mm/min, 950 mm/min) were carried out on the surface of GCr15 bearing steel by laminar plasma quenching (LPQ). The MJP-30 rolling contact fatigue testing machine was used to conduct RCF tests on the samples before and after the treatment. The laser confocal microscope (VK-9710), super depth of field microscope (UDM, VHX-1000C, Japan) and scanning electron microscope were used to analyze the microstructure, composition and microscopic damage morphology of the samples. The hardness of the samples was tested, and the fatigue propagation mechanism was analyzed. The results show that due to the rapid cooling rate and heating rate of LPQ, hardening zone was formed on the surface of the sample, and thus fine cryptocrystalline martensite structure was formed, which increased the surface hardness. The hardening layer thickness affects the RCF propagation mechanism. The deeper the hardening layer thickness is, the longer the fatigue life is. LPQ can increase the RCF life by 64%.
Key words:  laminar plasma quenching (LPQ)    GCr15 bearing steel    rolling contact fatigue (RCF)    crack propagation
发布日期:  2023-02-08
ZTFLH:  TH117.1  
基金资助: 国家重点研发计划(2018YFB1201702-04)
通讯作者:  *戴光泽,西南交通大学材料科学与工程学院教授。1998年毕业于日本京都工艺纤维大学,获工学博士学位。1994年,毕业于日本(国立)京都工艺纤维大学机械系统工学专业,获工学硕士学位。1985年,毕业于西安交通大学动力机械工程系低温技术专业,获学士学位。1999年12月加入西南交通大学材料科学与工程学院至今,主要从事材料服役行为及强度评价等领域的研究。
赵君文,西南交通大学材料科学与工程学院副教授、硕士研究生导师。2009年于华中科技大学材料加工工程专业获得工学博士学位,同年到西南交通大学材料学院工作至今。2004年于西华大学材料类专业获得工学学士学位。目前主要从事轨道交通关键材料、先进铸锻技术、相变储能材料等方面的研究工作。在Materials Science and Engineering A、Journal of Materials Processing Techno-logy、《金属学报》等国内外核心学术刊物上发表论文100余篇。   
作者简介:  闵军雄,2019年6月毕业于重庆理工大学,获得工学学士学位。2019年9月至今,在西南交通大学攻读硕士学位,主要从事GCr15轴承钢表面强化领域的研究。
引用本文:    
闵军雄, 张敏男, 戴光泽, 赵君文. 层流等离子体淬火对GCr15轴承钢的滚动接触疲劳及损伤性能的影响[J]. 材料导报, 2023, 37(2): 21060076-7.
MIN Junxiong, ZHANG Minnan, DAI Guangze, ZHAO Junwen. Effect of Laminar Plasma Quenching on Rolling Contact Fatigue and Damage Performance of GCr15 Bearing Steel. Materials Reports, 2023, 37(2): 21060076-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060076  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21060076
1 Zhang F C, Yang Z N. Engineering, 2019, 5(2), 319.
2 Vijay A, Paulson N, Sadeghi F. International Journal of Fatigue, 2018, 106, 92.
3 Soleimani H, Moavenian M. Urban Rail Transit, 2017, 3(4), 227.
4 Su C R, Shi L B, Wang W J, et al. Tribology International, 2019, 135, 488.
5 Mioković T, Schulze V, Vöhringer O, et al. Acta Mater, 2007, 55(2), 589.
6 Wang Y J, Yang M S, Sun S Q, et al. Journal of Iron and Steel Research, 2018, 30(3), 213(in Chinese).
王艳江, 杨卯生, 孙世清, 等. 钢铁研究学报, 2018, 30(3), 213.
7 Fu H W, Cui Y N, Zhang C, et al. China Metallurgy, 2020, 30(9), 11(in Chinese).
付悍巍, 崔一南, 张弛, 等. 中国冶金, 2020, 30(9), 11.
8 Medvedev S I, Nezhivlyak A E, Grechneva M V, et al. Welding International, 2015, 29(8), 643.
9 Xiang Y, Yu D P, Cao X Q, et al. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232(7), 787.
10 Guo D, Yu D P, Zhang P, et al. Surface & Coatings Technology, 2020, 394.
11 Zhang Q S, Toda-Caraballo I, Dai G Z, et al. International Journal of Fatigue, 2020, 137, 142.
12 Cao X Q, Yu D P, Xiao M, et al. Plasma Chem Plasma Process, 2016, 36(2), 693.
13 Xiang Y, Yu D P, Li Q T, et al. Journal of Materials Processing Technology, 2015, 226, 238.
14 Liu Z C, Ji Y P. Heat Treatment Technology and Equipment, 2016, 37(1), 1(in Chinese).
刘宗昌, 计云萍. 热处理技术与装备, 2016, 37(1), 1.
15 Yu B, Li X Y, Shi J, et al. Heat Treatment of Metals, 2015, 40(2), 176(in Chinese).
余斌, 李晓源, 时捷, 等. 金属热处理, 2015, 40(2), 176.
16 Anusha E, Kumar A, Shariff S M. Optics & Laser Technology, 2020, 125, 106061.
17 Wang B D. Bearing, 1994(7), 14(in Chinese).
王伯栋. 轴承, 1994(7), 14.
18 Liverani E, Adrian H A. Lutey, Alessandro Ascari, et al. Surface & Coa-tings Technology, 2016, 302.
19 Moshier M A, Hillberry B M. Fatigue & Fracture of Engineering Materials and Structures, 1999, 22(6), 519.
20 Guo Y B, Barkey M E. International Journal of Fatigue, 2004, 26(6), 605.
21 Fu H W, Cui Y N, Zhang C, et al. China Metallurgy, 2020, 30(9), 11(in Chinese).
付悍巍, 崔一南, 张弛, 等. 中国冶金, 2020, 30(9), 11.
22 Liu X C, Jiang Y, Chen F, et al. Modular Machine Tool & Automatic Manufacturing Technique, 2018, 3, 52(in Chinese).
刘晓初, 姜引, 陈凡, 等. 组合机床与自动化加工技术, 2018, 3, 52.
23 Zhang Y K, Zhang X R, Wang X D, et al. Material Science and Engineering, 2001, A297(1-2), 138.
24 Xu W. The effect mechanism of tempered structure of cold rolled low carbon steel on fatigue fracture. Master's Thesis, Yanshan University, China, 2010(in Chinese).
徐伟. 冷轧低碳钢回火组织对疲劳断裂的影响机制. 硕士学位论文, 燕山大学, 2010.
[1] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[2] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[3] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[4] 邹田春, 李龙辉, 巨乐章, 符记, 李晔. CFRP-铝合金板单、双搭接胶接接头刚度退化机理[J]. 材料导报, 2022, 36(19): 21050092-6.
[5] 高旭东, 邵永波, 郭永健, 钟颖, 罗霞飞. 应力比对服役后X56钢腐蚀疲劳裂纹扩展速率的影响[J]. 材料导报, 2022, 36(15): 21040303-6.
[6] 周峰峦, 王存宇, 曹文全, 董瀚. 冷轧中锰钢和等温淬火-碳配分钢裂纹扩展研究[J]. 材料导报, 2021, 35(8): 8164-8168.
[7] 吕斌, 李志强, 杨智勇, 刘小龙, 李卫京, 韩建民. 电渣重熔工艺对GCr15轴承钢凝固组织的影响[J]. 材料导报, 2021, 35(24): 24134-24141.
[8] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[9] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[10] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[11] 崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
[12] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[13] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[14] 郭萍, 赵永庆, 洪权, 毛小南, 侯红苗, 潘浩. TC4-DT钛合金疲劳裂纹扩展的微观机制[J]. 材料导报, 2019, 33(20): 3448-3451.
[15] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed