Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21080150-6    https://doi.org/10.11896/cldb.21080150
  无机非金属及其复合材料 |
MoO3含量对钙钛锆石基硼硅酸盐玻璃陶瓷的影响
万伟1, 朱永昌2,*, 张行泉3,*, 崔竹2, 杨德博2, 焦云杰2, 霍冀川1,3, 孟保健2
1 西南科技大学材料科学与工程学院,环境友好能源材料国家重点实验室,四川 绵阳 621010
2 中国建筑材料科学研究总院有限公司,北京 100024
3 西南科技大学分析测试中心,四川 绵阳 621010
Effect of MoO3 Content on the Zirconolite-based Borosilicate Glass-Ceramics
WAN Wei1, ZHU Yongchang2,*, ZHANG Xingquan3,*, CUI Zhu2, YANG Debo2, JIAO Yunjie2, HUO Jichuan1,3, MENG Baojian2
1 State Key Laboratory of Environmentally-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 China Building Materials Academy, Beijing 100024, China
3 Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
下载:  全 文 ( PDF ) ( 11338KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用原位热处理制备了钙钛锆石基硼硅酸盐玻璃陶瓷,研究了不同MoO3含量对钙钛锆石基硼硅酸盐玻璃陶瓷晶相、微结构和化学稳定性的影响。结果表明,随着MoO3含量的增加,玻璃化转变温度略有升高。在不产生黄色第二相的条件下,所有样品的主晶相均为钙钛锆石。当MoO3含量增加到4.88%(质量分数,下同)时,样品中出现了球状的钼钙矿晶相。然而,当MoO3含量增加到7.14%时,玻璃陶瓷样品中出现了黄相。SEM结果说明MoO3含量的增加使钙钛锆石晶粒尺寸减小、晶体数量增加,对钙钛锆石形貌和分布无明显影响。Mo元素主要分布在钼钙矿晶体中。在不产生黄相的情况下,所有玻璃陶瓷样品分布均匀,并且表现出良好的化学稳定性。对于CM0、CM2和CM4样品,Si、Ca、Mo元素的归一化浸出率在14 d时稳定在10-3 g·m-2·d-1量级,Ce元素的归一化浸出率在3 d时急剧下降并低至10-6 g·m-2·d-1量级。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万伟
朱永昌
张行泉
崔竹
杨德博
焦云杰
霍冀川
孟保健
关键词:  玻璃陶瓷  钙钛锆石  高放废液  原位热处理    
Abstract: A series of zirconolite-based borosilicate glass-ceramics were synthesized by in-situ heat treatment. The effects of MoO3 content on crystalline phase, microstructure and chemical durability of the zirconolite-based borosilicate glass-ceramics were investigated. The results show that glass transition temperature increases slightly with increasing content of MoO3. In the absence of the yellow phase, the main crystalline phase is zirconolite for all of the samples. When the content of MoO3 up to 4.88wt%, spherical powellite crystals appear in the bulk of glass-ceramics. However, the glass-ceramic containing 7.14wt% of MoO3 produced yellow phase. The SEM results show that the increase of MoO3 content has effects on the grain size and the number, but has no significant effect on the morphology and distribution of zirconolite crystals. In the case of no yellow phase, all the glass-ceramic samples are evenly distributed with excellent chemical stability. For the CM0, CM2 and CM4 samples, the normalized leaching rates of Si, Ca and Mo of these samples stabilize at 14 days and is of the order of 10-3 g·m-2·d-1and the leaching rates of Ce stabilize after a sharp drop on the third day, and fell as low as 10-6 g·m-2·d-1.
Key words:  glass-ceramic    zirconolite    high-level waste    in-situ heat treatment
发布日期:  2023-07-10
ZTFLH:  TQ171  
通讯作者:  *朱永昌,现任石英与特玻院副院长、玻璃固化工程中心主任,教授级高级工程师,博士研究生导师。近10年主持国防军工科研项目10余项,成功研发出核废料固化玻璃、光敏玻璃、锂-6闪烁玻璃等多种军用关键玻璃材料。获部级科技进步一等奖1项、二等奖1项,建材集团科技进步一等奖2项、三等奖2项。获国家发明专利10余项,发表学术论文30余篇。13520789538@163.com;
张行泉,副教授,硕士研究生导师。2011年7月毕业于哈尔滨工业大学,获理学博士学位。同年就职于西南科技大学分析测试中心至今,主要从事无机非金属氧化物功能材料及核废物处理材料方面研究工作。主持或参与国家自然科学基金项目、国防军工项目、四川省教育厅项目、国防重点学科实验室开放基金、中国工程物理研究院外协项目及西南科技大学“龙山学术人才科研支持计划”重点支持等项目10余项,发表学术论文26篇,授权专利1项。zhangxingquan@swust.edu.cn   
作者简介:  万伟,2019年本科毕业于西南科技大学材料科学与工程专业。2019年9月至今,西南科技大学材料科学与工程学院硕士在读。2020年9月至今,在中国建筑材料科学研究总院有限公司联合培养学习,主要从事高水平放射性废物的玻璃陶瓷固化研究。
引用本文:    
万伟, 朱永昌, 张行泉, 崔竹, 杨德博, 焦云杰, 霍冀川, 孟保健. MoO3含量对钙钛锆石基硼硅酸盐玻璃陶瓷的影响[J]. 材料导报, 2023, 37(13): 21080150-6.
WAN Wei, ZHU Yongchang, ZHANG Xingquan, CUI Zhu, YANG Debo, JIAO Yunjie, HUO Jichuan, MENG Baojian. Effect of MoO3 Content on the Zirconolite-based Borosilicate Glass-Ceramics. Materials Reports, 2023, 37(13): 21080150-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080150  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21080150
1 Gin S, Abdelouas A, Criscenti L J, et al. Materials Today, 2013, 16, 243.
2 Jantzen C M, Ojovan M I. Russian Journal of Inorganic Chemistry, 2020, 64, 1611.
3 Vienna J D. International Journal of Applied Glass Science, 2010, 1, 309.
4 Rautiyal P, Gupta G, Edge R, et al. Journal of Nuclear Materials, 2021, 544, 152702.
5 Crum J V, Neeway J J, Riley B J, et al. Journal of Nuclear Materials, 2016, 482, 1.
6 Eller P G, Jarvinen G D, Purson J D, et al. Radiochimica Acta, 1985, 39, 17.
7 McKeown D A, Gan H, Pegg I L. Journal of Nuclear Materials, 2017, 488, 143.
8 Caurant D, Majérus O, Fadel E, et al. Journal of the American Ceramic Society, 2007, 90, 774.
9 Calas G, Grand M L, Galoisy L, et al. Journal of Nuclear Materials, 2003, 322, 15.
10 Wang C F, Liu L J, Zhang S D. Journal of Nuclear and Radiochemistry, 2019, 41(6), 509(in Chinese).
王长福, 刘丽君, 张生栋. 核化学与放射化学, 2019, 41(6), 509.
11 Zhu H Z, Wang F, Liao Q L, et al. Materials Chemistry and Physics, 2020, 249, 122936.
12 Bohre A, Avasthi K, Pet'kov V I. Journal of Industrial and Engineering Chemistry, 2017, 50, 1.
13 Kim M, Heo J. Journal of Nuclear Materials, 2015, 467, 224.
14 Li H D, Wu L, Xu D, et al. Atomic Energy Science and Technology, 2016, 50(4), 597(in Chinese).
李会东, 吴浪, 徐东, 等. 原子能科学技术, 2016, 50(4), 597.
15 Begg B D, Vance E R, Conradson S D. Journal of Alloys and Compounds, 1998, 271, 221.
16 Blackburn L R, Bailey D J, Sun S K, et al. Advances in Applied Ceramics, 2021, 120, 69.
17 Thornber S M, Stennett M C, Vance E R, et al. Materials Research Society Advances, 2018, 3, 1065.
18 Zhang Y J, Zhang Z M, Wei T, et al. Journal American Ceramic Society, 2020, 103(10), 5470.
19 Caurant D, Majerus O, Loiseau P, et al. Journal of Nuclear Materials, 2006, 354, 143.
20 Peng L, Zhang K, He Z, et al. Journal of Advanced Ceramics, 2017, 7, 41.
21 Peng L, Zhang K, Yin D, et al. Ceramics International, 2016, 42, 18907.
22 Zhang K B, Wen G, Yin D, et al. Journal of Nuclear Materials, 2015, 467, 214.
23 Zhang K B, Wen G, Zhang H, et al. Journal of the European Ceramic Society, 2015, 35, 3085.
24 Zhang K B, Yin D, Peng L, et al. Ceramics International, 2017, 43, 1415.
25 Vance E R, Ball C J, Day R A, et al. Journal of Alloys and Compounds, 1994, 213, 406.
26 Loiseau P, Caurant D. Journal of Nuclear Materials, 2010, 402, 38.
27 Gupta M, Kulriya P K, Shukla R, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 379, 119.
28 ASTM International. ASTM C1285-14, Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: the product consistency test (PCT), ASTM, 2014.
29 Wu L, Li Y X, Teng Y C, et al. Journal of Non-Crystalline Solids, 2013, 380, 123.
30 Wang X, Motto-Ros V, Panczer G, et al. Spectrochimica Acta Part B, 2013, 87, 139.
31 Chen H, Marcial J, Ahmadzadeh M, et al. International Journal of Applied Glass Science, 2020, 11, 660.
32 Wu L, Li H D, Wang X, et al. Journal of the Chinese Ceramic Society, 2016, 44(3), 444(in Chinese).
吴浪, 李会东, 王欣, 等. 硅酸盐学报, 2016, 44(3), 444.
33 Zhu H Z, Wang F, Liao Q L, et al. Journal of Nuclear Materials, 2020, 532, 152026.
34 Bunker B C, Arnold G W, Day D E, et al. Journal of Non-Crystalline Solids, 1986, 87, 226.
35 Crawford C L, Marra J C, Bibler N E. Journal of Alloys and Compounds, 2007, 444, 569.
36 Martin C, Ribet I, Frugier P, et al. Journal of Nuclear Materials, 2007, 366 , 277.
37 Rebiscoul D, Lee A V, Rieutord F, et al. Journal of Nuclear Materials, 2004, 326, 9.
38 Lian Q H, Zhang X Q, Huo J C, et al. Materials Research Express, 2020, 7, 054201.
[1] 连启会, 张行泉, 霍冀川, 吴浪, 张壮森. Nd2O3对钼酸钙-钙钛锆石硼硅酸盐玻璃陶瓷结构和性能的影响[J]. 材料导报, 2022, 36(7): 21020054-5.
[2] 司伟. 废玻璃反应析晶制备黑色玻璃陶瓷及其性能研究[J]. 材料导报, 2020, 34(16): 16062-16065.
[3] 郑晗煜, 蒲永平, 李来平, 薛建嵘, 高选乔, 胡忠武, 任广鹏. 储能介电玻璃陶瓷的制备及研究进展[J]. 材料导报, 2019, 33(Z2): 20-23.
[4] 李保卫, 李鑫, 崔俊杰, 张宇轩, 张雪峰, 贾晓林, 欧阳顺利. 微波烧结制备玻璃陶瓷的研究进展[J]. 材料导报, 2019, 33(Z2): 189-197.
[5] 刘贺, 傅仁利, 何钦江, 李国郡, 王贺. SiO2-BPO4/LMZBS低温烧结玻璃陶瓷及其微波介电性能[J]. 材料导报, 2019, 33(18): 3152-3155.
[6] 李光大, 张楠, 张开丽, 赵三团, 麻开旺, 许贺龙, 赵威, 谢蟪旭. 含钙铁氧体磁性生物活性玻璃陶瓷热种子的制备与表征[J]. 材料导报, 2018, 32(24): 4211-4216.
[7] 耿安东, 朱永昌, 崔竹, 张浩, 竹含真, 韩勖, 霍冀川. 不同晶核剂对硼硅酸盐钙钛锆石固化体析晶行为及化学稳定性的影响[J]. 材料导报, 2018, 32(22): 3979-3983.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed