Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21060061-8    https://doi.org/10.11896/cldb.21060061
  高分子与聚合物基复合材料 |
相变复合纳米纤维的研究与应用
孙宗旭1, 张焕芝1,2,*, 荆锐1, 吴博竞1, 徐芬1,2, 夏永鹏1,2, 孙立贤1,2,*
1 桂林电子科技大学材料科学与工程学院,广西 桂林 541004
2 桂林电子科技大学广西信息材料重点实验室,广西 桂林 541004
Research and Application of Phase Change Composite Nanofibers
SUN Zongxu1, ZHANG Huanzhi1,2,*, JING Rui1, WU Bojing1, XU Fen1,2, XIA Yongpeng1,2, SUN Lixian1,2,*
1 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
2 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, Guangxi,China
下载:  全 文 ( PDF ) ( 17710KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机相变材料具有储能密度大、相容性好、价格低廉的特点,是一种理想的热能储存材料。而聚合物纳米纤维具有比表面积大、纤维直径可控和柔韧性好等多种优点,在纺织、能源等领域具有广阔的应用前景。因此,通过各种复合技术将有机相变材料与聚合物纳米纤维结合可获得结构稳定的相变复合纳米纤维,其在智能控温服装、医疗、柔性可穿戴器件等领域表现出潜在的应用价值。
为了综合利用相变材料和纳米纤维的性能优势,解决有机相变材料在复合纳米纤维中的泄漏问题,本文对比分析了相变材料的封装技术(包括物理混合法、接枝共聚法和纳米约束技术)和复合纳米纤维的制备方法(包括中空纤维填充法、涂层法、复合纺丝法和微胶囊混合纺丝法)。其中,纳米约束技术表现出多样的封装形式和较好的封装效果,复合纺丝法具有较好的纤维可控性,而微胶囊混合纺丝法则具有较高的制备灵活性。为了解决相变复合纳米纤维导热率低的缺陷,研究者大多将导热填料掺杂到纤维基体中,利用高导热率的导热填料在复合材料中形成导热通路来提高整体导热率。另外,结合当下科技前沿信息,对相变复合纳米纤维在柔性可穿戴器件和药物输送控释方面的应用进行进一步介绍,并对其应用领域的扩展进行展望。
本文概述了相变复合纳米纤维的特点及制备方法,并提出复合纺丝法在一定程度上可解决相变材料易泄漏的问题;阐明了通过添加高导热填料可改善相变复合纳米纤维导热率低的缺陷的研究进展;重点介绍了相变复合纳米纤维在柔性可穿戴器件和药物的输送控释两个领域的应用;展望了相变复合纳米纤维的研究方向。本综述为新型相变复合纳米纤维的制备与应用提供了参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙宗旭
张焕芝
荆锐
吴博竞
徐芬
夏永鹏
孙立贤
关键词:  相变复合纳米纤维  封装技术  导热增强  智能应用    
Abstract: Organic phase change materials(PCMs) are considered to be ideal thermal energy-storage materials due to their high energy-storage capacity, good compatibility and low cost. And polymer nanofibers display broad prospect for applications in textiles, energy sources and so on, because of their advantages of large specific surface area, regulated diameter and good flexibility. Therefore, organic PCMs and polymer nanofibers are combined to fabricate phase-change composite nanofibers with good structural-stability through various composite technologies. The composite nanofibers show potential applications in smart temperature-controlling clothing, medical care, and flexible wearable devices.
In order to comprehensively utilize the advantages of PCMs and nanofibers, and solve the leakage problem of organic PCMs in composite nanofibers, encapsulation technology of PCMs (including physical mixing method, graft co-polymerization method and nano-confinement techno-logy) and preparation methods of composite nanofibers (including hollow fiber filling method, coating method, composite spinning method and microcapsule hybrid spinning method) are compared and analyzed. Among them, the nano-constraint technology shows a variety of encapsulation types and excellent encapsulation effects. The composite spinning method has a good advantage in fiber size controllability, while the microcapsules included spinning method is quite agile for nanofibers preparation. Most researches further introduce thermally conductive fillers into fiber matrix to overcome the low thermal conductivity of phase change composite nanofibers. The fillers form an interconnected thermally conductive path in the composite material to improve the overall thermal conductivity. In addition, the application of phase-change composite nanofibers in flexible wearable devices and drugs’ delivery and controlled release is further introduced according with the frontier information of science and technology, and the expansion of its application fields is proposed.
In a word, this article summarizes the characteristics and preparation methods of phase change composite nanofibers, and it is pointed out that composite spinning method can solve the problem of leakage of phase change materials to some extent at the same time. And we clarify the research progress and shortcomings of the method to improve the low thermal conductivity of phase change composite nanofibers by adding high thermal conductivity fillers. We also have focused on the applications of phase change composite nanofibers in flexible wearable devices and drugs’ delivery and controlled release. At last, we prospect the research direction of the phase-change composite nanofibers. This review provides a reference for the preparation, exploration and application of new phase-change composite nanofibers.
Key words:  phase change composite nanofiber    packaging technology    heat conductivity enhancement    smart application
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TQ342+.8  
基金资助: 国家自然科学基金(51863005;51462006;51102230;51671062;51871065;51971068);广西自然科学基金(2018GXNSFDA281051;2014GXNSFAA118401;2020GXNSFGA297004);广西八桂学者基金
通讯作者:  * 张焕芝,桂林电子科技大学材料科学与工程学院教授、硕士研究生导师。2005年6月在郑州大学获工学学士学位,2010年6月在北京化工大学获博士学位。主要研究领域为相变储能材料、功能材料、多孔材料、材料热化学。在Energy & Environmental Materials、Journal of Materials Chemistry A、Chemical Engineering Journal等国内外重要学术刊物上发表学术论文70余篇,申请中国发明专利10余项,已授权专利5项。zhanghuanzhi@guet.edu.cn
孙立贤,桂林电子科技大学教授、博士研究生导师,“八桂学者”。分别于1984年、1987年和1994年在湖南大学分析化学专业获得理学学士、硕士、博士学位。研究领域为新能源(储氢、制氢、相变储能)材料、(生物)燃料电池、镍氢/锂离子电池、新型催化剂、热化学、传感器、建筑节能材料。在Energy & Environmental Science、Journal of Materials Chemistry A、Biosensors & Bioelectronics等国内外重要学术刊物发表学术论文400余篇,申请中国发明专利100余项,已授权专利50余项。sunlx@guet.edu.cn   
作者简介:  孙宗旭,2018年6月毕业于北京石油化工学院,获工学学士学位。现为桂林电子科技大学材料科学与工程学院硕士研究生。主要研究领域为新能源相变储能材料。
引用本文:    
孙宗旭, 张焕芝, 荆锐, 吴博竞, 徐芬, 夏永鹏, 孙立贤. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 21060061-8.
SUN Zongxu, ZHANG Huanzhi, JING Rui, WU Bojing, XU Fen, XIA Yongpeng, SUN Lixian. Research and Application of Phase Change Composite Nanofibers. Materials Reports, 2023, 37(7): 21060061-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060061  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21060061
1 Lu L, Cao X Q, Shen Z Y, et al. Sustainable Materials and Technologies, 2020, 26, e00221.
2 Wang Y, Yuan A Q, Zhao Y Y, et al. Journal of Applied Polymer Science, 2019, 137(13), 48497.
3 Xia Y P, Cui W W, Zhang H Z, et al. Modern Chemical Industry, 2017, 37(6), 15 (in Chinese).
夏永鹏, 崔韦唯, 张焕芝, 等. 现代化工, 2017, 37(6), 15.
4 Wang X, Fang J H, Liu P, et al. Journal of Functional Materials, 2019, 50(2), 2070 (in Chinese).
王鑫, 方建华, 刘坪, 等. 功能材料, 2019, 50(2), 2070.
5 Khajavi R, Abbasipourb M. Scientia Iranica F, 2012, 19 (6), 2029.
6 Li L, Zhang X, Qu Y, et al. Materials Reports, 2019, 33(Z1), 89 (in Chinese).
李霖, 张旭, 曲飏, 等. 材料导报, 2019, 33(Z1), 89.
7 Liu Z, Ju K Y, Wang Z Q, et al. Nanoscale Research Letters, 2019, 14, 310.
8 Ding H, Lei X, Wang Y L, et al. Liaoning Silk, 2018(3), 36 (in Chinese).
丁洪, 雷雪, 王祎隆, 等. 辽宁丝绸, 2018(3), 36.
9 Xia X, Xie T T. Materials Review, 2016, 30(27), 87 (in Chinese).
夏鑫, 谢婷婷. 材料导报, 2016, 30(27), 87.
10 Graham M, Coca-Clemente J A, Shchukina E, et al. Journal of Materials Chemistry A, 2017, 5(26), 13683.
11 Huang X, Xia W, Zou R. Journal of Materials Chemistry A, 2014, 2(47), 19963.
12 Xia Y P, Zhang H Z, Huang P R, et al. Chemical Engineering Journal, 2019, 362, 909.
13 Hyun D C, Levinson N S, Jeong U, et al. Angewandte Chemie International Edition, 2014, 53(15), 3780.
14 Uemura T, Yanai N, Watanabe S, et al. Nature Commun, 2010, 1(7), 1.
15 Liu C, Rao Z, Zhao J, et al. Nano Energy, 2015, 13, 814.
16 Adeel A, Mark J, Yan Y Y, et al. International Journal of Energy Research, 2019, 43(11), 5572.
17 Aftab W, Huang X, Wu W, et al. Energy and Environmental Science. 2018, 11(6), 1392.
18 Zou Y H, Ke H Z, Xiao G G, et al. Polymer Materials Science and Engineering, 2018, 34(12), 59 (in Chinese).
邹雨航, 柯惠珍, 肖港归, 等. 高分子材料科学与工程, 2018, 34(12), 59.
19 Wang S D, He Y F, Liu H, et al. Textile Industry and Technology, 2014, 2(1), 26 (in Chinese).
王曙东, 何远方, 刘华, 等. 轻纺工业与技术, 2014, 2(1), 26.
20 Ke H Z, Li Y G. Polymer Materials Science and Engineering, 2017, 33(4), 81 (in Chinese).
柯惠珍, 李永贵. 高分子材料科学与工程, 2017, 33(4), 81.
21 Sun D B. Melliand China, 2013(8), 10 (in Chinese).
苏德保. 国际纺织导报, 2013(8), 10.
22 Onder E, Sarier N, Cimena E. Thermochimica Acta, 2008, 467, 63.
23 Wang X, Fang J H, Jiang Z Q, et al. Synthetic Fiber in China, 2018, 47(8), 10 (in Chinese).
王鑫, 方建华, 江泽琦, 等. 合成纤维, 2018, 47(8), 10.
24 Faerevik H, Gersching D, Hagstr B. Melliand China, 2013(11), 11 (in Chinese).
Faerevik H, Gersching D, Hagstr B. 国际纺织导报, 2013(11), 11.
25 Zhao X J, Yu M. Journal of Functional Materials, 2022, 53(4), 4039(in Chinese).
赵肖娟, 于嫚. 功能材料, 2022, 53(4), 4039.
26 Li J J, Lu Y C, Ye G D, et al. Acta Materiae Compsetae Sinica, 2012, 29(3), 79 (in Chinese).
李佳佳, 陆艺超, 叶光斗, 等. 复合材料学报, 2012, 29(3), 79.
27 Li Z, Ye G D, Xu J J, et al. Synthetic Fiber in China, 2015, 44(7), 14 (in Chinese).
李昭, 叶光斗, 徐建军, 等. 合成纤维, 2015, 44(7), 14.
28 Zhang H, Wang Q Q, Xiang H X. China Synthetic Fiber Industry, 2011, 34(3), 39 (in Chinese).
张鸿, 王倩倩, 相恒学. 合成纤维工业, 2011, 34(3), 39.
29 Hua J B, Zou L M, Ni J H, et al. China Synthetic Fiber Industry, 2016, 39(6), 11 (in Chinese).
花建兵, 邹黎明, 倪建华, 等. 合成纤维工业, 2016, 39(6), 11.
30 Zhang H, Liu H, Yang S R, et al. China Synthetic Fiber Industry, 2012, 35(3), 10 (in Chinese).
张鸿, 刘辉, 杨淑瑞, 等. 合成纤维工业, 2012, 35(3), 10.
31 Fang J, Niu H T, Lin T, et al. Chinese Science Bulletin, 2008, 53(15), 2265.
32 Subbiah T, Bhat G S, Tock R W, et al. Journal of Applied Polymer Science, 2005, 96(2), 557.
33 Greiner A, Wendorff J H. Angewandte Chemie International Edition, 2007, 46(30), 5670.
34 Xia C L. Synthetic Fiber in China, 2019, 48(8), 19 (in Chinese).
夏长林. 合成纤维, 2019, 48(8), 19.
35 Zhang S M, Hao Y G, Hu K, et al. Guangzhou Chemical Industry, 2015, 43(24), 72 (in Chinese).
张凇铭, 郝勇敢, 胡凯, 等. 广州化工, 2015, 43(24), 72.
36 Zhu W T, Wang Y Q, Song S K, et al. Solar Energy Materials and Solar Cells, 2021, 222, 1110939.
37 Sun S X, Xie R, Ju X J, et al. New Chemical Materials, 2016, 44(8), 59 (in Chinese).
孙少兴, 谢锐, 巨晓洁, 等. 化工新型材料, 2016, 44(8), 59.
38 Cai L H, Zhang X X. Materials Review, 2002, 16(12), 61 (in Chinese).
蔡利海, 张兴祥. 材料导报, 2002, 16(12), 61.
39 Wang G X, Ding N, Qiu G X, et al. China Plastic Industry, 2019, 47(2), 147 (in Chinese).
王固霞, 丁娜, 丘管先, 等. 塑料工业, 2019, 47(2), 147.
40 Kong L X, Wei C Y. Cotton Textile Technology, 2020, 48(7), 7 (in Chinese).
孔令训, 魏春艳. 棉纺织技术, 2020, 48(7), 7.
41 Yu H F, Wei J, Liu L, et al. Journal of Dalian Polytechnic University, 2012, 31(3), 215 (in Chinese).
于海飞, 魏菊, 刘玲, 等. 大连工业大学学报, 2012, 31(3), 215.
42 Kibria M A, Anisur M R, Mahfuz M H, et al. Energy Conversion and Management, 2015, 95, 69.
43 Zhao J Q, Meng F C, Shen J B, et al. Chemical Industry and Engineering, 2020, 37(3), 67 (in Chinese).
赵敬棋, 孟凡成, 申景博, 等. 化学工业与工程, 2020, 37(3), 67.
44 Wang D W, Yu R S, Yan H, et al. Materials Reports, 2014, 28(12), 70 (in Chinese).
王大伟, 余荣升, 晏华, 等. 材料导报, 2014, 28(12), 70.
45 Yang L, Zhang L, Li C Z. Composites Science and Technology, 2020, 200, 108429.
46 Guo Y Q, Yang X T, Ruan K P, et al. ACS Applied Materials & Interfaces, 2019, 11, 25465.
47 Wen G Q, Xie R, Ju X J, et al. Chemical Industry and Engineering Progress, 2015, 34(10), 3688 (in Chinese).
温国清, 谢锐, 巨晓洁, 等. 化工进展, 2015, 34(10), 3688.
48 Zhang X, Xie R, Wang W, et al. Chemical Industry and Engineering Progress, 2019, 38(2), 993 (in Chinese).
张秀, 谢锐, 汪伟, 等. 化工进展, 2019, 38(2), 993.
49 Fang L L, He H Z, Zhai M, et al. Journal of Materials Science and Engineering, 2020, 38(2), 325 (in Chinese).
方丽莉, 柯惠珍, 翟敏, 等. 材料科学与工程学报, 2020, 38(2), 325.
50 Zhao Y X, Chen Y J, Pan G X, et al. Chemical Journal of Chinese Universities, 2019, 40(4), 824 (in Chinese).
赵宇轩, 陈艳君, 潘顾鑫, 等. 高等学校化学学报, 2019, 40(4), 824.
51 Wan Y F, Zhou P C, Liu Y D, et al. RSC Advances, 2016, 6, 21204.
52 Niu Z X, Yuan W Z. ACS Applied Materials Interfaces, 2021, 13, 4508.
53 Zhu C L, Huo D, Chen Q S, et al. Advanced Materials, 2017, 29(40), 1703702.
54 Xue J J, Zhu C L, Li J H, et al. Advanced Functional Materials, 2018, 28(15), 1705563.
55 Qiu J C, Huo D, Xia Y N. Advanced Materials, 2020, 32(25), 2000660.
56 Qiu J C, Xu J C, Xia Y N. Advanced Healthcare Materials, 2020, 10(4), 2000587.
57 Xue J J, Wu T, Qiu J C, et al. Small Methods, 2020, 4(9), 2000125.
[1] 金露, 谢鹏, 赵彦琦, 邹博杨, 丁玉龙, 蓝元良, 谯耕. 基于相变材料的电动汽车电池热管理研究进展[J]. 材料导报, 2021, 35(21): 21113-21126.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed