Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21113-21126    https://doi.org/10.11896/cldb.20030192
  无机非金属及其复合材料 |
基于相变材料的电动汽车电池热管理研究进展
金露1, 谢鹏1, 赵彦琦2, 邹博杨2, 丁玉龙2, 蓝元良1, 谯耕1
1 全球能源互联网研究院有限公司欧洲院, 柏林 10623
2 伯明翰大学化学工程系储能研究中心,伯明翰 B15 2TT
Research Progress on Phase Change Material Based Thermal Management System of EV Batteries
JIN Lu1, XIE Peng1, ZHAO Yanqi2, ZOU Boyang2, DING Yulong2, LAN Yuanliang1, QIAO Geng1
1 Global Energy Interconnection Research Institute Europe GmbH, 10623 Berlin, Germany
2 Energy storage Research Centre, School of Chemical Engineering, the University of Birmingham, B15 2TT Birmingham, UK
下载:  全 文 ( PDF ) ( 11672KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池作为电动车的动力核心,其性能和安全性直接关系到整车质量和行驶里程。电池的充放电性能和循环寿命受到温度的影响。本文简要介绍了电池发热机理和温度对电池性能的影响,主要综述了基于相变材料的电动汽车电池热管理技术的应用和发展。从材料角度,文中列举并分析了具有合适相变温度的PCM的潜热、导热系数等热物理性质,结论是:有机材料在满足潜热和相变温度的同时,还具备优异的成型性,而其较一般的导热性能和机械性能可通过添加改性剂来增强和优化;从装置角度,基于相变材料的热管理模块可以在被动模式下实现电芯间更均匀的温度分布、较小的温度波动和较低的能耗,而与传统的空冷、液冷方式结合后,混合热管理系统显示出更好的协同效果。目前,有关集成相变材料的电池组实验研究仍较少,但已有的计算流体动力学研究表明,借助相变材料,电池温度性能得到了优化和完善。最后分析了该新型热管理技术的发展瓶颈、可行的解决方案和未来研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金露
谢鹏
赵彦琦
邹博杨
丁玉龙
蓝元良
谯耕
关键词:  PCM  导热增强  电池热管理模块  混合热管理系统  模拟和仿真    
Abstract: As the essential power source, Lithium-ion batteries (LiBs) pack has direct impact on the driving range of electric vehicles. The charge-discharge performance and life span of batteries are affected by temperature. With a brief introduction of the heat generation mechanism and the impact of temperature, this paper mainly reviews the development of phase change material (PCM) thermal management techniques for EV batteries. PCM with favorable thermophysical properties such as melting temperature, latent heat and thermal conductivity are discussed and compared. It concludes that organic PCM are more popular because they have proper melting temperature and latent heat. Means of enhancing their thermophysical properties are discussed. It has been reported that adding modifiers can effectively enhance thermal conductivity and mecha-nical properties such as compressive strength. Compared with conventional thermal management system (TMS), PCM thermal management modules lead to a more uniform temperature distribution and less temperature fluctuation of cells, as well as less energy cost. When integrated with conventional modules, the hybrid TMS even shows improved synergistic performance. A few experimental studies regarding the battery packs integrated with PCM are found. Computational fluid dynamics study has shown that with the help of PCM, the performance of battery packs is improved. In the end, a prospect direction of novel PCM thermal management system of EV batteries is discussed in term of research and production possibilities.
Key words:  phase change material    heat transfer enhancement    battery thermal management module    hybrid thermal management system    modeling and simulation
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  U469.72  
  TM912  
基金资助: 国家电网科技项目(SGRIKXJSKF[2017]623)
通讯作者:  geng.qiao@geiri.eu   
作者简介:  金露,博士,高级研发工程师,毕业于苏黎世联邦理工学院应用化学和生物系,2016年获工学博士学位。2017年起就职于全球能源互联网欧洲研究院,任高级研发工程师,专注于锂电池、相变储能和热化学储能领域,从事新型储能材料和装置设计研发。英国皇家化学学会会员,美国电化学协会会员。累计发表SCI论文18篇,其中一作7篇;授权专利6项,其中国际专利1项。
谯耕,博士,高级研发工程师,毕业于英国伯明翰大学,获博士学位。目前就职于全球能源互联网欧洲研究院,任高级研发工程师,从事材料研发、节能、储能技术研究。累计SCI他引279次,h-index 8;参与编著中文专著1本,英文专著1本;已获授权中国专利14项,国际专利1项。
引用本文:    
金露, 谢鹏, 赵彦琦, 邹博杨, 丁玉龙, 蓝元良, 谯耕. 基于相变材料的电动汽车电池热管理研究进展[J]. 材料导报, 2021, 35(21): 21113-21126.
JIN Lu, XIE Peng, ZHAO Yanqi, ZOU Boyang, DING Yulong, LAN Yuanliang, QIAO Geng. Research Progress on Phase Change Material Based Thermal Management System of EV Batteries. Materials Reports, 2021, 35(21): 21113-21126.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030192  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21113
1 Ma S, Jiang M, Tao P, et al.Progress in Natural Science: Materials International, 2018, 28 (6), 653.
2 Abada S, Marlair G, Lecocq A, et al.Journal of Power Sources, 2016, 306, 178.
3 Gu W B, Wang C Y.Journal of the Electrochemical Society, 2000, 147 (8), 2910.
4 Bernardi D.Journal of the Electrochemical Society, 1985, 132 (1), 5.
5 Sherfey J M, Brenner A.Journal of the Electrochemical Society, 1958, 105 (11), 665.
6 Doyle M, Fuller T F, Newman J.Journal of the Electrochemical Society, 1993, 140 (6), 1526.
7 Newman J, Thomas K E, Hafezi H, et al. Journal of Power Sources, 2003, 119-121, 838.
8 Liu A H.Journal of Power Supply, 2019, 17 (1), 95 (in Chinese).
刘岸晖.电源学报, 2019, 17 (1), 95.
9 Mousavi G S M, Nikdel M.Renewable and Sustainable Energy Reviews, 2014, 32, 477.
10 Wu W, Wang S, Wu W, et al.Energy Conversion and Management, 2019, 182, 262.
11 Pesaran A A.Journal of Power Sources, 2002, 110 (2), 377.
12 Ramadass P, Haran B, White R, et al.Journal of Power Sources, 2002, 112 (2), 614.
13 Gabrisch H, Ozawa Y, Yazami R.Electrochimica Acta, 2006, 52 (4), 1499.
14 Bodenes L, Naturel R, Martinez H, et al. Journal of Power Sources, 2013, 236, 265.
15 Biensan P, Simon B, Pérès J P, et al.Journal of Power Sources, 1999, 81-82, 906.
16 Abraham D P, Roth E P, Kostecki R, et al. Journal of Power Sources, 2006, 161 (1), 648.
17 Spotnitz R, Franklin J.Journal of Power Sources, 2003, 113 (1), 81.
18 Tong W, Somasundaram K, Birgersson E, et al. International Journal of Thermal Sciences, 2015, 94, 259.
19 Nagasubramanian G.Journal of Applied Electrochemistry, 2001, 31 (1), 99.
20 Ji Y, Zhang Y, Wang C Y.Journal of the Electrochemical Society, 2013, 160 (4), A636.
21 Bugga R, Smart M, Whitacre J, et al. In: Lithium ion batteries for space applications. IEEE Aerospace Conference, 2007.
22 Wang H, Zhang H, Cheng Y, et al. Electrochimica Acta 2018, 278 (10), 279.
23 Gao F, Tang Z. Electrochimica Acta, 2008, 53 (15), 5071.
24 Zhang S S, Xu K, Jow T R. Journal of Power Sources, 2003, 115 (1), 137.
25 Liu H, Wei Z, He W, et al. Energy Conversion and Management, 2017, 150 (15), 304.
26 Hu X, Zheng Y, Howey D A, et al. Progress in Energy and Combustion Science, 2020, 77, 100806.
27 Yang N, Zhang X, Shang B, et al. Journal of Power Sources, 2016, 306 (29), 733.
28 Gogoana R, Pinson M B, Bazant M Z, et al. Journal of Power Sources, 2014, 252 (15), 8.
29 Bohacek J, Raudensky M, Karimi-Sibaki E. Applied Thermal Enginee-ring, 2019, 159, 113940.
30 Zhang Z C, Zheng L L, Du G C, et al. Energy Storage Science and Technology, 2019, 8(S1), 31(in Chinese).
张志超, 郑莉莉, 杜光超, 等. 储能科学与技术, 2019, 8(S1), 31.
31 Rugh J P, Pesaran A, Smith K. In: Electric Vehicle Battery Thermal Issues and Thermal Management Techniques, SAE 2011 Alternative Refri-gerant and System Efficiency Symposium. 2011.
32 Pesaran A A. In: Battery Thermal Management in EVs and HEVs: Issues and Solutions, Advanced Automotive Battery Conference. 2001.
33 Zolot M D, Kelly K, Keyser M, et al. In: Thermal Evaluation of the Honda Insight Battery Pack. 36th Intersociety Energy Conversion Engineering Conference, 2001.
34 Kelly K J, Mihalic M, Zolot M D. In: Battery Usage and Thermal Perfor-mance of the Toyota Prius and Honda Insight for Various Chassis Dynamometer Test Procedures. 17th Annual Battery Conference on Applications and Advances, 2002.
35 Chen K, Wu W, Yuan F, et al. Energy, 2019, 167, 781.
36 Al-Hallaj S, Selman J R. Journal of the Electrochemical Society, 2000, 147 (9), 3231.
37 Sasmito A P, Shamim T, Mujumdar A S. Applied Thermal Engineering, 2013, 58 (1), 615.
38 Rao Z H, Wang S F, Zhang Y L. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36 (20), 2287.
39 Ling Z, Wen X, Zhang Z, et al. Energy Technology, 2016, 4 (9), 1071.
40 Putra N, Ariantara B, Pamungkas R A. Applied Thermal Engineering, 2016, 99, 784.
41 Rao Z, Huo Y, Liu X. Experimental Thermal and Fluid Science, 2014, 57, 20.
42 Wang Q, Rao Z, Huo Y, et al. International Journal of Thermal Sciences, 2016, 102, 9.
43 Wu W, Yang X, Zhang G, et al. Energy Conversion and Management, 2017, 138, 486.
44 Kiani M, Ansari M, Arshadi A A, et al. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1703.
45 Ling Z, Wang F, Fang X, et al. Applied Energy, 2015, 148(15), 403.
46 Al-Hallaj S, Kizilel R, Lateef A, et al. In: Passive thermal management using phase change material (PCM) for EV and HEV Li-ion batteries. 2005 IEEE Vehicle Power and Propulsion Conference, 2005, pp. 376.
47 Kizilel R, Lateef A, Sabbah R, et al. Journal of Power Sources, 2008, 183 (1), 370.
48 Maleki H, Al-Hallaj S, Selman J, et al. Journal of the Electrochemical Society, 1999, 146 (3), 947.
49 Agyenim F, Hewitt N, Eames P, et al. Renewable and Sustainable Energy Reviews, 2010, 14 (2), 615.
50 Malik M, Dincer I, Rosen M A. International Journal of Energy Research, 2016, 40 (8), 1011.
51 Sharma A, Tyagi V V, Chen C R, et al. Renewable and Sustainable Energy Reviews, 2009, 13 (2), 318.
52 Wang Y, Amiri A, Vafai K, et al. International Journal of Heat and Mass Transfer, 1999, 42 (19), 3659.
53 Pielichowski K, Flejtuch K. Polymers for Advanced Technologies, 2002, 13 (10), 690.
54 Karaman S, Karaipekli A, Sarı A, et al. Solar Energy Materials and Solar Cells, 2011, 95 (7), 1647.
55 Sharma S D, Buddhi D, Sawhney R L. Solar Energy, 1999, 66 (6), 483.
56 Keleş S, Kaygusuz K, Sari A. International Journal of Energy Research, 2005, 29 (9), 857.
57 Sari A. Energy Conversion and Management, 2003, 44 (14), 2277.
58 Sari A, Kaygusuz K. Renewable Energy, 2003, 28 (6), 939.
59 Bao Y H, Wang T W. Modern Chemical Industry, 2010, 30(2), 33(in Chinese).
包艳华, 王庭慰.现代化工, 2010, 30 (2), 33.
60 Rao Z, Wang S. Renewable and Sustainable Energy Reviews, 2011, 15 (9), 4554.
61 Hamada Y, Ohtsu W, Fukai J. Solar Energy, 2003, 75 (4), 317.
62 Frusteri F, Leonardi V, Vasta S, et al. Applied Thermal Engineering, 2005, 25 (11), 1623.
63 Zeng J L, Sun L X, Xu F, et al. Journal of Thermal Analysis and Calorimetry, 2007, 87 (2), 371.
64 Zhang P, Hu Y, Song L, et al. Solar Energy Materials and Solar Cells, 2010, 94 (2), 360.
65 Cui Y, Liu C, Hu S, et al. Solar Energy Materials and Solar Cells, 2011, 95 (4), 1208.
66 Mettawee E B S, Assassa G M R. Solar Energy, 2007, 81 (7), 839.
67 Zhang Z, Fang X. Energy Conversion and Management, 2006, 47 (3), 303.
68 Lafdi K, Mesalhy O, Shaikh S. Journal of Applied Physics, 2007, 102 (8), 083549.
69 Mills A, Al-Hallaj S. Journal of Power Sources, 2005, 141 (2), 307.
70 Li W, Wang Y H, Kong C C. International Communications in Heat and Mass Transfer, 2015, 68, 276.
71 Şahan N, Fois M, Paksoy H. Solar Energy Materials and Solar Cells, 2015, 137, 61.
72 Khyad A, Samrani H, Bargach M N, et al. Journal of Materials and Environmental Science, 2016, 7 (7), 2551.
73 Wu W, Zhang G, Ke X, et al. Energy Conversion and Management, 2015, 101, 278.
74 Parameshwaran R, Jayavel R, Kalaiselvam S. Journal of Thermal Analysis and Calorimetry,2013, 114 (2), 845.
75 Hussain A, Abidi I H, Tso C Y, et al. International Journal of Thermal Sciences, 2018, 124, 23.
76 Zhang T C, Yu H Y, Mao A Q, et al. The Chinese Journal of Process Engineering, 2017, 17 (1), 201(in Chinese).
张天驰, 俞海云, 冒爱琴, 等.过程工程学报, 2017, 17 (1), 201.
77 Zhu J Q, Song Y, Zhou W B, et al. Energy Storage Science and Techno-logy, 2017, 6(2), 213(in Chinese).
朱教群, 宋轶, 周卫兵, 等. 储能科学与技术, 2017, 6 (2), 213.
78 Zhang N, Yuan Y, Yuan Y, et al. Solar Energy, 2014, 110, 64.
79 Nourani M, Hamdami N, Keramat J, et al. Renewable Energy, 2016, 88, 474.
80 Zabalegui A, Lokapur D, Lee H. International Journal of Heat and Mass Transfer, 2014, 78, 1145.
81 Regin A F, Solanki S C, Saini J S. Renewable and Sustainable Energy Reviews, 2008, 12 (9), 2438.
82 Li M, Wu Z, Kao H, et al. Energy Conversion and Management, 2011, 52 (11), 3275.
83 Cheng W I, Zhang R M, Xie K, et al. Solar Energy Materials and Solar Cells, 2010, 94 (10), 1636.
84 Yin H, Gao X, Ding J, et al. Energy Conversion and Management, 2008, 49 (6), 1740.
85 Karaipekli A, Sarı A, Kaygusuz K. Renewable Energy, 2007, 32 (13), 2201.
86 Li D, Cheng X, Li Y, et al. Solar Energy, 2018, 171, 142.
87 Li H, Liu X, Fang G Y. Applied Physics A: Materials Science & Proces-sing, 2010, 100 (4), 1143.
88 Zhang H, Wang X, Wu D. Journal of Colloid and Interface Science, 2010, 343 (1), 246.
89 Wang W, Yang X, Fang Y, et al. Applied Energy, 2009, 86 (9), 1479.
90 Zeng J L, Cao Z, Yang D W. Journal of Thermal Analysis and Calorimetry, 2010, 101 (1), 385.
91 Sivasamy P, Devaraju A, Harikrishnan S. Materials Today: Proceedings, 2018, 5 (6), 14423.
92 Abdulateef A M, Abdulateef J, Sopian K, et al. Case Studies in Thermal Engineering, 2019, 14, 100487.
93 Singh R, Sadeghi S, Shabani B. Energies, 2018, 12 (75), 1.
94 Alrashdan A, Mayyas A T, Al-Hallaj S. Journal of Materials Processing Technology, 2010, 210 (1), 174.
95 Lyu Y, Yang X, Li X, et al. Applied Energy, 2016, 178, 376.
96 Li J, Huang J, Cao M. Applied Thermal Engineering, 2018, 131, 660.
97 Dmitruk A, Naplocha K, Grzęda J, et al. Materials, 2020, 13 (2), 415.
98 Peng G, Dou G, Hu Y, et al. Advances in Polymer Technology, 2020 (3), 1.
99 Kizilel R, Sabbah R, Selman J R, et al. Journal of Power Sources, 2009, 194 (2), 1105.
100 Sabbah R, Kizilel R, Selman J R, et al. Journal of Power Sources, 2008, 182 (2), 630.
101 Lin C, Xu S, Chang G, et al. Journal of Power Sources, 2015, 275 (1), 742.
102 Cao J H.Research of thermal management systems based on phase change materials for lithium-ion battery. Masters Thesis, Tsinghua University,China,2013(in Chinese).
曹建华. 基于PCM的锂离子电池热管理系统研究.硕士学位论文, 清华大学, 2013.
103 Ling Z Y.Performance investigation of the power battery thermal management system using expanded graphite based composite phase change materials. Ph. D. Thesis, South China University of Technology,China,2016(in Chinese).
凌子夜. 基于膨胀石墨基复合PCM的动力电池热管理系统性能研究.博士学位论文, 华南理工大学, 2016.
104 Huang Y H, Cheng W L, Zhao R. Energy Conversion and Management, 2019, 182 (15), 9.
105 Zhang X, Kong X, Li G, et al. Energy, 2014, 64, 1092.
106 Wang F, Cao J, Ling Z, et al. Energy, 2020, 207, 118215.
107 Liu R, Chen J, Xun J, et al. Applied Energy, 2014, 132 (1), 288.
108 Qu Z G, Li W Q, Tao W Q. International Journal of Hydrogen Energy, 2014, 39 (8), 3904.
109 Ling Z, Wang F, Gao X, et al. Applied Energy, 2015, 148 (15), 403.
110 Jilte R D, Kumar R, Ahmadi M H, et al. Applied Thermal Engineering, 2019, 161, 114199.
111 Hémery C V, Pra F, Robin J F, et al. Journal of Power Sources, 2014, 270 (15), 349.
112 Ghadbeigi L, Day B, Lundgren K, et al. Energy Reports, 2018, 4, 303.
113 Zhong G, Zhang G, Yang X, et al. Applied Thermal Engineering,2017, 127, 176.
114 鲁志佩, 郑卫鑫. 中国专利, CN201781007U, 2011.
115 Yang J H, Cai S. U. S. Patent, US20120171523A1, 2015.
116 Bertness K I. U. S. Patent, US9419311B2, 2016.
117 Kraft W, Stahl V, Vetter P. Energies, 2020, 13 (11), 3023.
118 Wang M Y, Craig T U S. Department of Energy Vehicle Technology Office Annual Merit Review, 2016.
[1] 赵思勰,晏华,汪宏涛,李云涛,余荣升,杨健健. 月桂酸/膨胀珍珠岩复合相变材料的制备与热性能研究*[J]. 材料导报编辑部, 2017, 31(10): 107-111.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed