Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23080114-4    https://doi.org/10.11896/cldb.23080114
  金属与金属基复合材料 |
CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响
张雷1,2,3,*, 龙伟民1, 樊志斌3, 都东2, 刘大双4, 孙志鹏5, 李宇佳5, 尚勇6
1 中国机械总院集团郑州机械研究所有限公司,新型钎焊材料与技术国家重点实验室,郑州 450001
2 清华大学机械工程系,北京 100084
3 中国机械总院集团宁波智能机床研究院有限公司,浙江 宁波 315709
4 合肥工业大学材料科学与工程学院,合肥 230009
5 宁波中机松兰刀具科技有限公司,浙江 宁波 315709
6 中铁工程装备集团隧道设备制造有限公司,河南 新乡 453000
Effect of CuTi on the Microstructure and Wear Resistance of Diamond/AlSi Composite Braze Coating on Ti-6Al-4V Alloy
ZHANG Lei1,2,3,*, LONG Weimin1, FAN Zhibin3, DU Dong2, LIU Dashuang4, SUN Zhipeng5, LI Yujia5, SHANG Yong6
1 State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering Co., Ltd. of China National Machinery Institute Group, Zhengzhou 450001, China
2 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
3 Ningbo Intelligent Machine Tool Research Institute Co. Ltd. of China National Machinery Institute Group, Ningbo 315709, Zhejiang, China
4 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
5 Ningbo Songlan Cutting Tools Technology Co. Ltd., Ningbo 315709, Zhejiang, China
6 Tunneling Equipment Manufacture of China Railway Tunnel Group Co. Ltd., Xinxiang 453000,Henan, China
下载:  全 文 ( PDF ) ( 11511KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钎涂为提高部件表面耐磨性能提供新的技术方案。AlSi钎料可用于钛合金钎焊,但采用AlSi钎料在Ti-6Al-4V钛合金表面钎焊金刚石颗粒难以实现牢固连接,本工作通过在AlSi钎料中添加CuTi合金粉,制备了AlSi复合钎料,并通过感应钎焊在Ti-6Al-4V钛合金表面制备了金刚石复合钎涂层。研究结果表明, 溶解在AlSi合金中的CuTi颗粒增加了钎料,改变了金刚石颗粒在钎涂层中的分布。钎涂层合金基体主要由α-Al、共晶硅、CuAl2和Ti(Al1-xSix)3组成;随着CuTi合金含量的增加,复合钎涂层中的Ti(Al1-xSix)3形态由板条状向胞状转变。当CuTi含量为10%(质量分数)时,金刚石复合钎涂层的耐磨性能最佳,这是由于Ti含量的增加提升了钎料与金刚石颗粒的结合强度,同时,原位反应生成的CuAl2、TiAl3硬质颗粒均匀分布于钎涂层中,从而有效提高AlSi合金基体的显微硬度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雷
龙伟民
樊志斌
都东
刘大双
孙志鹏
李宇佳
尚勇
关键词:  钛合金  感应钎涂  金刚石  AlSi钎料  耐磨性能    
Abstract: Braze coating provides a new technological solution for improving the surface wear resistance of components. The method of brazing diamond particles on the surface of Ti-6Al-4V titanium alloy using AlSi brazing material is difficult to achieve firm connection. This experiment prepared AlSi composite brazing material by adding CuTi alloy powder to AlSi brazing material, and prepared diamond composite brazing coating on the surface of Ti-6Al-4V alloy by using induction brazing. The results show that, the CuTi particles dissolved in AlSi alloy increased the viscosity of the brazing material at brazing temperature and changed the distribution of diamond particles in the brazing coating. The composite brazing coating matrix was mainly composed of α-Al, eutectic silicon, Ti(Al1-xSix)3 and CuAl2. With the increase of CuTi alloy in the brazing coating, the morphology of Ti(Al1-xSix)3 changed from lamellar to cellular structure. When the CuTi was 10wt%, diamond composite brazing coating exhibited best wear resistance,because the increase of Ti content improved the bonding strength between brazing filler metal and diamond particles, and at the same time, CuAl2 and TiAl3 hard particles generated by in-situ reaction were uniformly distributed in the brazing coating, which effectively improved the microhardness of AlSi alloy matrix.
Key words:  titanium alloy    induction brazing    diamond    AlSi brazing alloy    wear resistance
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TG425  
基金资助: 中原科技创新领军人才项目(234200510015);国家重点研发计划(2021YFB3401100)
通讯作者:  *张雷,正高级工程师,硕士研究生导师,中原科技创新领军人才。长期致力于先进连接技术与装备等研发及成果转化工作,主持、参与完成国家重点研发计划、973计划项目、863计划项目、国家自然科学基金、国际合作、省市重大科技专项等15项科技项目;获河南省技术发明一等奖、中国机械工业科学技术特等奖、中国专利优秀奖、青年科技创新奖等省部级科技奖励12项。发表论文46篇。zhanglei86529029@sina.com.cn   
引用本文:    
张雷, 龙伟民, 樊志斌, 都东, 刘大双, 孙志鹏, 李宇佳, 尚勇. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 23080114-4.
ZHANG Lei, LONG Weimin, FAN Zhibin, DU Dong, LIU Dashuang, SUN Zhipeng, LI Yujia, SHANG Yong. Effect of CuTi on the Microstructure and Wear Resistance of Diamond/AlSi Composite Braze Coating on Ti-6Al-4V Alloy. Materials Reports, 2024, 38(21): 23080114-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080114  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23080114
1 Zhao Q, Sun Q, Xin S, et al. Materials Science and Engineering A, 2022, 845, 143260.
2 Xie R, Lin N, Zhou P, et al. Applied Surface Science, 2018, 436, 467.
3 Jiang J, Han G, Zheng X, et al. Surface & Coatings Technology, 2019, 375, 645.
4 Huang G, Wang Y, Zhang M, et al. Chinese Journal of Aeronautics, 2021, 34, 67.
5 Duan D, Han F, Ding J, et al. Ceramics International, 2021, 47, 22854.
6 Wang P, Zhang L, Cheng Z H, et al. Diamond & Related Materials, 2023,132,109645.
7 Long W, Liu D, Wu A, et al. Diamond and Related Materials, 2020, 110, 108085.
8 Zheng X, Zheng K, Chang J N, et al. Surface & Coatings Technology, 2022, 445, 128703.
9 Chen X G, Yan J C, Ren S C, et al. Materials Letters, 2013, 105, 123.
10 Li N, Zhang R, Zhang L M, et al. Applied Mechanics and Materials, 2013, 313-314, 245.
11 Gao T, Liu G, Liu X. Materials Characterization. 2014, 95, 285.
12 Wang H P, Peng K. Acta Materiae Compositae Sinica, 2018, 35(4), 910 (in Chinese).
王海鹏, 彭坤. 复合材料学报, 2018, 35(4), 910.
13 Xiao C J, Dou Z Q, Li Z X. Powder Metallurgy Technology, 2018, 36(1), 21 (in Chinese).
肖长江, 窦志强, 栗正新. 粉末冶金技术, 2018, 36(1), 21.
[1] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[2] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[3] 韩赛斌, 胡秀飞, 王英楠, 王子昂, 张晓宇, 彭燕, 葛磊, 徐明升, 徐现刚, 冯志红. 金刚石单晶中的位错及其对器件影响的研究进展[J]. 材料导报, 2024, 38(20): 23100241-14.
[4] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[5] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[6] 徐东, 金天, 王朋波, 程战. Gd改性Ni-Cr钎料钎焊金刚石组织和性能研究[J]. 材料导报, 2024, 38(19): 23070245-5.
[7] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[8] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[9] 李红梅, 孟建兵, 于浩洋, 董小娟, 周海安, 战胜杰, 唐友泉. ZnO纳米颗粒掺杂对镍钛合金表面微弧氧化膜层形貌及性能的影响[J]. 材料导报, 2024, 38(13): 22110123-7.
[10] 呼丹明, 段锋, 丁冬海, 李杰, 尹育航, 彭凯. 不烧滑板磨削加工用Fe-Ni-Cu-Sn金属基金刚石工具的制备与性能[J]. 材料导报, 2024, 38(10): 22100199-7.
[11] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[12] 刘震, 尹育航, 敬臣, 武美玲, 陶洪亮, 程彦强. 磨粒有序分布对金刚石锯片切割性能的影响[J]. 材料导报, 2023, 37(8): 21070268-5.
[13] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[14] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[15] 屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed