Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22040390-9    https://doi.org/10.11896/cldb.22040390
  金属与金属基复合材料 |
TC4钛合金二维超声振动车削性能研究
屈盛官†,*, 翟荐硕, 段晨风, 孙朋飞, 李小强
华南理工大学机械与汽车工程学院,广州 510640
Research on Machinability of Two-dimensional Ultrasonic Vibration Assisted Turning of TC4 Titanium Alloy
QU Shengguan†,*, ZHAI Jianshuo, DUAN Chenfeng, SUN Pengfei, LI Xiaoqiang
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 40766KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛合金因其优越的物理和化学性能被广泛应用于航空航天、轮船船舶、武器制备等各类高精尖领域,但如何克服其高比热容、低热导率特性以实现高质高效加工也成为了机械加工领域的热点问题。二维超声振动车削加工工艺具有断续车削特性,能显著提升复合材料、脆性材料及陶瓷材料等难加工材料的车削效果。因此,采用二维超声振动车削工艺,对TC4钛合金进行车削加工,并从多种加工性能方面与传统车削进行对比。实验结果表明,二维超声振动车削工艺能够有效提高工件加工质量并降低切削过程中车削力,减小刀屑接触滑动区域与粘着区域的摩擦系数,延长刀具使用寿命的同时使其具有良好的断屑能力。另外,超声振动车削还会增大工件表面的加工硬化程度,细化表层晶粒,并增加工件表面残余应力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
屈盛官
翟荐硕
段晨风
孙朋飞
李小强
关键词:  TC4钛合金  二维超声振动车削  表面质量  刀具磨损  切削性能  残余应力    
Abstract: Due tothe superior physical and chemical properties, titanium alloys are widely used in various high-precision fields such as aerospace, ships, and weapon preparation. However, how to overcome its high specific heat capacity and low thermal conductivity to achieve high-quality and efficient processing has also become a hot issue in the field of machining. The two-dimensional ultrasonic vibration turning process has the cha-racteristics of intermittent turning, which can significantly improve the turning effect of difficult-to-machine materials such as composite materials, brittle materials and ceramic materials. Therefore, the two-dimensional ultrasonic vibration turning process was used to turn the TC4 titanium alloy, and compared with the traditional turning in terms of different processing properties. The experimental results demonstrated that the two-dimensional ultrasonic vibration turning process can effectively improve the machining quality of the workpiece, reduce the turning force during the cutting process, reduce the friction coefficient between the chip contact sliding area and the adhesive area, improve the tool life and have good chip breaking ability. In addition, ultrasonic vibration turning will increase the degree of work hardening of the workpiece surface, refine the surface grains, and increase the residual stress on the workpiece surface.
Key words:  TC4 titanium alloy    two-dimensional ultrasonic vibration turning    surface quality    tool wear    cutting performance    residual stress
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TH161  
  TH117  
基金资助: 广东省基础与应用基础研究基金(2021A1515012394);广东省重点领域研发计划&广东省科技厅(2020B090926003);珠海产学研合作项目(ZH22017001200011PWC)
通讯作者:  * 屈盛官,华南理工大学机械与汽车工程学院教授、博士研究生导师、高级工程师。1989年太原工业大学内燃机专业本科毕业,2001年华中科技大学动力机械及工程专业硕士毕业,2005年华南理工大学机械与汽车工程学院机械工程专业博士毕业后到华南理工大学工作至今。目前主要从事高性能金属材料的制备、精密成形及其装备制造技术,难加工材料的切削加工技术,金属新材料成形过程的数值模拟与动态仿真、机械零部件的摩擦磨损等。发表论文200余篇,包括RSC Advances、Material and Design、International Journal of Advanced Manufacturing Technology、International Journal of Fatigue等。qusg@scut.edu.cn   
作者简介:  †共同第一作者
翟荐硕,2020年毕业于沈阳建筑大学,获得工学学士学位。现为华南理工大学机械与汽车工程学院硕士研究生,在屈盛官教授的指导下进行研究。目前主要研究领域为先进制造技术。
引用本文:    
屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
QU Shengguan, ZHAI Jianshuo, DUAN Chenfeng, SUN Pengfei, LI Xiaoqiang. Research on Machinability of Two-dimensional Ultrasonic Vibration Assisted Turning of TC4 Titanium Alloy. Materials Reports, 2023, 37(22): 22040390-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040390  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22040390
1 Deng J X, Li Y S, Song W L. Wear, 2008, 265, 1776.
2 Ruggiero A, D Amato R, Gómez E, et al. Tribology International, 2016, 96, 349.
3 Ruggiero A, D-Amato R, Gómez E. Tribology International, 2015, 92, 154.
4 Bai D S, Sun J F, Chen W Y, et al. International Journal of Advanced Manufacturing Technology, 2016, 90, 2863.
5 Sharma A, Sharma M D, Sehgal R. Arabian Journal for Science and Engineering, 2012, 38, 3201.
6 Teimouri R, Amini S, Bami A B. Measurement, 2018, 116, 129.
7 Troitskii O A, Likhtman V I. Nauk, 1963, 148, 332.
8 Zhang X Y, Lu Z H, Peng Z L, et al. Chinese Journal of Mechanical Engineering, 2021, 57(05), 133 (in Chinese).
张翔宇, 路正惠, 彭振龙, 等. 机械工程学报, 2021, 57(05), 133.
9 Fang S X, Zhao H L, Zhang Q J. Chinese Journal of Mechanical Engineering, 2017, 53(19), 22 (in Chinese).
房善想, 赵慧玲, 张勤俭. 机械工程学报, 2017, 53(19), 22.
10 Xu W X, Zhang L C. Advances in Manufacturing, 2015, 3, 173.
11 Ni C B, Zhu L D, Yang Z C. Wear, 2019, 436, 203006.
12 Zhao B, Bie W, WanG X, et al. Ultrasonics, 2019, 98, 7.
13 Lv D S, Xu J H, Ding W F, et al. Journal of Materials Processing Technology, 2016, 229, 641.
14 Ma K, Zhu X J, Cui X L. Precision Engineering, 2020, 63, 148.
15 Ni C B, Zhu L D, Ning P S, et al. Chinese Journal of Mechanical Engineering, 2019, 55(7), 207 (in Chinese).
倪陈兵, 朱立达, 宁晋生, 等. 机械工程学报, 2019, 55(7), 207.
16 Mohammad L, Saeid A, Javad A. Tribology International, 2020, 151, 106492.
17 Zhang C, Guo P, Ehmann K F, et al. Ultrasonics, 2016, 67, 30.
18 Zhang J G, Norikazu S, Wang Y L, et al. Journal of Materials Processing Technology, 2014, 214(11), 2644.
19 Zhang C, Guo P, Ehmann K F, et al. Materials and Manufacturing Processes, 2015, 30(8), 1001.
20 Ma C X, Shamoto E, Moriwaki T, et al. International Journal of Machine Tools and Manufacture, 2005, 45(11), 1295.
21 Lin J Q, Han J G, Zhou X Q. International Journal of Mechanical Sciences, 2016, 117, 43.
22 Gi D K, Byoung G L. Materials Processing Technology, 2007, 151, 221.
23 Li W H, Pi Y Y. Chinese Tool Engineering, 2022, 56(6), 83 (in Chinese).
李会文, 皮云云. 工具技术, 2022, 56(6), 83.
24 Pang Y, Ma Y, Xu C. Chinese Diamond and Abrasives Engineering, 2019, 39(2), 83 (in Chinese).
庞宇, 马原, 许超. 金刚石与磨料磨具工程, 2019, 39(2), 83.
25 Li Y, Zhang M L, Dong H T, et al. Chinese Light Industry Machinery, 2020, 38(5), 24 (in Chinese).
李莹, 张敏良, 董慧婷, 等. 轻工机械, 2020, 38(5), 24.
26 Bai W. Experimental study on vibration-assisted cutting mechanism and machinability of typical difficult-to-machine materials. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2018 (in Chinese).
柏伟. 典型难加工材料振动辅助切削机理与可加工性实验研究. 博士学位论文, 华中科技大学, 2018.
27 Nath C, Rahman M, Neo K S. Journal of Materials Processing Technology, 2009, 209, 4459.
28 Saito H, Jung H J, Shamoto E. Precision Engineering, 2016, 45, 44.
29 Hu Z T, Qin N, Liu F. Mechanical Design and Manufacturing, 2018(2), 164 (in Chinese).
胡智特, 秦娜, 刘凡. 机械设计与制造, 2018(2), 164.
30 Sun F J. Research on cutting mechanism of Ti-6Al-4V HIP powder metallurgy materials. Ph. D. Thesis, South China University of Technology, China, 2015 (in Chinese).
孙富建. Ti-6Al-4V HIP粉末冶金材料切削机理研究. 博士学位论文, 华南理工大学, 2015.
31 Da-Silva R B, Vieira J M, Cardoso R N, et al. Wear, 2011, 271(9-10), 2459.
32 Mohammad L, Saeid A, Sayed A S. International Journal of Mechanical Sciences, 2019, 160, 241.
33 Mohammad L, Saeid A, Javad A. Tribology International, 2020, 151, 106492.
34 Liu X. Experimental study on physical and mechanical properties of ultrasonic-assisted hard turning of GCr15 bearing steel. Ph. D. Thesis, Henan University of Technology, China, 2011 (in Chinese).
刘向. 超声辅助硬态车削GCr15轴承钢物理机械性能的试验研究. 博士学位论文, 河南理工大学, 2011.
35 Shang Z H, ZUO X Z. Chinese Tool Engineering, 2005(2), 16 (in Chinese).
尚自河, 左秀芝. 工具技术, 2005(2), 16.
[1] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[2] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[3] 骆传跃, 郑光明, 盖少磊, 姜秀丽, 杨先海, 程祥. 深冷处理对Al2O3-SiCw陶瓷刀具表面完整性及切削性能的影响[J]. 材料导报, 2023, 37(14): 21120031-8.
[4] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[5] 方乃文, 黄瑞生, 武鹏博, 尹立孟, 龙伟民, 徐锴, 曹浩, 邹吉鹏. 钛合金窄间隙激光填丝焊接工艺及接头组织性能分析[J]. 材料导报, 2023, 37(10): 22010253-1.
[6] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[7] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[8] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[9] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[10] 李刚, 李中双, 符伟, 谭俊哲, 杨康. 焊接顺序对管状大厚度V形接头焊接残余应力场的影响[J]. 材料导报, 2021, 35(z2): 325-328.
[11] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[12] 王伟, 王萌, 蔡军, 张浩泽, 史亚鸣, 张晓锋, 黄海广, 王快社. EB炉熔炼TC4钛合金轧制过程中的组织演变与力学性能[J]. 材料导报, 2021, 35(8): 8140-8145.
[13] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[14] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[15] 王力, 王海斗, 底月兰, 赵运才, 董丽虹, 李帅. 热障涂层应力产生机制及分布特征[J]. 材料导报, 2021, 35(17): 17143-17149.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed