Abstract: Due tothe superior physical and chemical properties, titanium alloys are widely used in various high-precision fields such as aerospace, ships, and weapon preparation. However, how to overcome its high specific heat capacity and low thermal conductivity to achieve high-quality and efficient processing has also become a hot issue in the field of machining. The two-dimensional ultrasonic vibration turning process has the cha-racteristics of intermittent turning, which can significantly improve the turning effect of difficult-to-machine materials such as composite materials, brittle materials and ceramic materials. Therefore, the two-dimensional ultrasonic vibration turning process was used to turn the TC4 titanium alloy, and compared with the traditional turning in terms of different processing properties. The experimental results demonstrated that the two-dimensional ultrasonic vibration turning process can effectively improve the machining quality of the workpiece, reduce the turning force during the cutting process, reduce the friction coefficient between the chip contact sliding area and the adhesive area, improve the tool life and have good chip breaking ability. In addition, ultrasonic vibration turning will increase the degree of work hardening of the workpiece surface, refine the surface grains, and increase the residual stress on the workpiece surface.
通讯作者:
* 屈盛官,华南理工大学机械与汽车工程学院教授、博士研究生导师、高级工程师。1989年太原工业大学内燃机专业本科毕业,2001年华中科技大学动力机械及工程专业硕士毕业,2005年华南理工大学机械与汽车工程学院机械工程专业博士毕业后到华南理工大学工作至今。目前主要从事高性能金属材料的制备、精密成形及其装备制造技术,难加工材料的切削加工技术,金属新材料成形过程的数值模拟与动态仿真、机械零部件的摩擦磨损等。发表论文200余篇,包括RSC Advances、Material and Design、International Journal of Advanced Manufacturing Technology、International Journal of Fatigue等。qusg@scut.edu.cn
1 Deng J X, Li Y S, Song W L. Wear, 2008, 265, 1776. 2 Ruggiero A, D Amato R, Gómez E, et al. Tribology International, 2016, 96, 349. 3 Ruggiero A, D-Amato R, Gómez E. Tribology International, 2015, 92, 154. 4 Bai D S, Sun J F, Chen W Y, et al. International Journal of Advanced Manufacturing Technology, 2016, 90, 2863. 5 Sharma A, Sharma M D, Sehgal R. Arabian Journal for Science and Engineering, 2012, 38, 3201. 6 Teimouri R, Amini S, Bami A B. Measurement, 2018, 116, 129. 7 Troitskii O A, Likhtman V I. Nauk, 1963, 148, 332. 8 Zhang X Y, Lu Z H, Peng Z L, et al. Chinese Journal of Mechanical Engineering, 2021, 57(05), 133 (in Chinese). 张翔宇, 路正惠, 彭振龙, 等. 机械工程学报, 2021, 57(05), 133. 9 Fang S X, Zhao H L, Zhang Q J. Chinese Journal of Mechanical Engineering, 2017, 53(19), 22 (in Chinese). 房善想, 赵慧玲, 张勤俭. 机械工程学报, 2017, 53(19), 22. 10 Xu W X, Zhang L C. Advances in Manufacturing, 2015, 3, 173. 11 Ni C B, Zhu L D, Yang Z C. Wear, 2019, 436, 203006. 12 Zhao B, Bie W, WanG X, et al. Ultrasonics, 2019, 98, 7. 13 Lv D S, Xu J H, Ding W F, et al. Journal of Materials Processing Technology, 2016, 229, 641. 14 Ma K, Zhu X J, Cui X L. Precision Engineering, 2020, 63, 148. 15 Ni C B, Zhu L D, Ning P S, et al. Chinese Journal of Mechanical Engineering, 2019, 55(7), 207 (in Chinese). 倪陈兵, 朱立达, 宁晋生, 等. 机械工程学报, 2019, 55(7), 207. 16 Mohammad L, Saeid A, Javad A. Tribology International, 2020, 151, 106492. 17 Zhang C, Guo P, Ehmann K F, et al. Ultrasonics, 2016, 67, 30. 18 Zhang J G, Norikazu S, Wang Y L, et al. Journal of Materials Processing Technology, 2014, 214(11), 2644. 19 Zhang C, Guo P, Ehmann K F, et al. Materials and Manufacturing Processes, 2015, 30(8), 1001. 20 Ma C X, Shamoto E, Moriwaki T, et al. International Journal of Machine Tools and Manufacture, 2005, 45(11), 1295. 21 Lin J Q, Han J G, Zhou X Q. International Journal of Mechanical Sciences, 2016, 117, 43. 22 Gi D K, Byoung G L. Materials Processing Technology, 2007, 151, 221. 23 Li W H, Pi Y Y. Chinese Tool Engineering, 2022, 56(6), 83 (in Chinese). 李会文, 皮云云. 工具技术, 2022, 56(6), 83. 24 Pang Y, Ma Y, Xu C. Chinese Diamond and Abrasives Engineering, 2019, 39(2), 83 (in Chinese). 庞宇, 马原, 许超. 金刚石与磨料磨具工程, 2019, 39(2), 83. 25 Li Y, Zhang M L, Dong H T, et al. Chinese Light Industry Machinery, 2020, 38(5), 24 (in Chinese). 李莹, 张敏良, 董慧婷, 等. 轻工机械, 2020, 38(5), 24. 26 Bai W. Experimental study on vibration-assisted cutting mechanism and machinability of typical difficult-to-machine materials. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2018 (in Chinese). 柏伟. 典型难加工材料振动辅助切削机理与可加工性实验研究. 博士学位论文, 华中科技大学, 2018. 27 Nath C, Rahman M, Neo K S. Journal of Materials Processing Technology, 2009, 209, 4459. 28 Saito H, Jung H J, Shamoto E. Precision Engineering, 2016, 45, 44. 29 Hu Z T, Qin N, Liu F. Mechanical Design and Manufacturing, 2018(2), 164 (in Chinese). 胡智特, 秦娜, 刘凡. 机械设计与制造, 2018(2), 164. 30 Sun F J. Research on cutting mechanism of Ti-6Al-4V HIP powder metallurgy materials. Ph. D. Thesis, South China University of Technology, China, 2015 (in Chinese). 孙富建. Ti-6Al-4V HIP粉末冶金材料切削机理研究. 博士学位论文, 华南理工大学, 2015. 31 Da-Silva R B, Vieira J M, Cardoso R N, et al. Wear, 2011, 271(9-10), 2459. 32 Mohammad L, Saeid A, Sayed A S. International Journal of Mechanical Sciences, 2019, 160, 241. 33 Mohammad L, Saeid A, Javad A. Tribology International, 2020, 151, 106492. 34 Liu X. Experimental study on physical and mechanical properties of ultrasonic-assisted hard turning of GCr15 bearing steel. Ph. D. Thesis, Henan University of Technology, China, 2011 (in Chinese). 刘向. 超声辅助硬态车削GCr15轴承钢物理机械性能的试验研究. 博士学位论文, 河南理工大学, 2011. 35 Shang Z H, ZUO X Z. Chinese Tool Engineering, 2005(2), 16 (in Chinese). 尚自河, 左秀芝. 工具技术, 2005(2), 16.