Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 21-25    https://doi.org/10.11896/j.issn.1005-023X.2017.016.005
  材料研究 |
N掺杂Cu2O薄膜的低温沉积及快速热退火研究*
自兴发, 叶青, 刘瑞明, 程满, 黄文卿, 何永泰
楚雄师范学院物理与电子科学学院,新能源应用技术联合研发中心, 楚雄 675000
Study on N-doped Cu2O Thin Film Fabricated by Low Temperature Deposition and Rapid Thermal Annealing
ZI Xingfa, YE Qing, LIU Ruiming, CHENG Man, HUANG Wenqing, HE Yongtai
Joint Research and Development Centre for New Energy Application Technology, School of Physical and Electronic Science, Chuxiong Normal University, Chuxiong 675000
下载:  全 文 ( PDF ) ( 1505KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用氧化亚铜(Cu2O)陶瓷靶,利用射频磁控溅射沉积法在氮气和氩气的混合气氛下制备了N掺杂Cu2O(Cu2O∶N)薄膜,并在N2气氛下对薄膜进行了快速热退火处理,研究了N2流量和退火温度对Cu2O∶N薄膜的生长行为、物相结构、表面形貌及光电性能的影响。结果显示,在衬底温度300 ℃、N2流量12 sccm条件下生长的薄膜为纯相Cu2O薄膜;在N2气氛下对预沉积薄膜进行快速热退火处理不影响薄膜的物相结构,薄膜的结晶质量随退火温度(< 450 ℃)的升高而显著改善;快速热退火处理能改善薄膜的结晶质量和缺陷,降低光生载流子的散射,增强载流子的传输,预沉积Cu2O∶N薄膜经400 ℃退火处理后展示出较好的电性能,薄膜的霍尔迁移率(μ)为27.8 cm2·V-1·s-1、电阻率(ρ)为2.47×103 Ω·cm。研究表明低温溅射沉积和快速热退火处理能有效改善Cu2O∶N薄膜的光电性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
自兴发
叶青
刘瑞明
程满
黄文卿
何永泰
关键词:  氧化亚铜  N2流量  低温沉积  快速热退火  光电特性    
Abstract: The N-doped Cu2O (Cu2O∶N) thin films were deposited by radio frequency magnetron sputtering a Cu2O target in N2 and Ar mixture atmosphere, and then the as-deposited Cu2O∶N thin films were annealed by rapid thermal annealing (RTA) in N2 atmosphere. Effects of N2 flow rates and annealing temperatures on growth behaviour, crystalline structures, surface morphologies,optical and electrical properties of Cu2O∶N thin films were investigated. The results showed that the as-deposited thin film grown at 300 ℃ substrate temperature contained only single phase of Cu2O under 12 sccm N2 flow rate. The RTA process had no influence on the crystalline structures of the as-deposited thin films in N2 atmosphere, but the crystalline quality of thin films could be sharply improved by rising annealing temperature (< 450 ℃). The thin film annealed at 400 ℃ showed good electrical properties—a Hall mo-bility (μ) of 27.8 cm2·V-1·s-1 and a resistivity (ρ) of 2.47×103 Ω·cm, which were attributed to the mitigated scattering of photo-generated carriers and the enhanced carriers transport, both induced by the improvement of crystalline quality and defect states of thin film as results of RTA. Our experiments indicated the effectiveness of low temperature sputtering deposition and RTA treatment on improving the photoelectric properties of Cu2O∶N thin films.
Key words:  copper (Ⅰ) oxide    N2 flow rate    low temperature deposition    rapid thermal annealing (RTA)    photoelectric property
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TB34  
基金资助: 国家自然科学基金(61271159)
作者简介:  自兴发:1971年生,博士,副教授,主要研究方向为Cu2O薄膜材料制备及器件集成 E-mail:zxf@cxtc.edu.cn
引用本文:    
自兴发, 叶青, 刘瑞明, 程满, 黄文卿, 何永泰. N掺杂Cu2O薄膜的低温沉积及快速热退火研究*[J]. 《材料导报》期刊社, 2017, 31(16): 21-25.
ZI Xingfa, YE Qing, LIU Ruiming, CHENG Man, HUANG Wenqing, HE Yongtai. Study on N-doped Cu2O Thin Film Fabricated by Low Temperature Deposition and Rapid Thermal Annealing. Materials Reports, 2017, 31(16): 21-25.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.005  或          https://www.mater-rep.com/CN/Y2017/V31/I16/21
1 Nandy S, Banerjee A, Fortunato E, et al. A review on Cu2O and CuI-based p-type semiconducting transparent oxide materials: Pro-mising candidates for new generation oxide based electronics [J].Rev Adv Sci Eng,2013,2(4):1.
2 Rühle S, Anderson A Y, Barad H N, et al. All-oxide photovoltaics [J].J Phys Chem Lett,2012,3(24):3755.
3 Yan X G, Huang W Q, Huang G F, et al. Band-gap widening of nitrogen-doped Cu2O: New insights from first-principles calculations [J]. Sci Adv Mater,2014,6(6):1221.
4 Alharbi F, Bass J D, Salhi A, et al. Abundant non-toxic materials for thin film solar cells: Alternative to conventional materials [J]. Renew Energy,2011,36(10):2753.
5 Minami T, Nishi Y, Miyata T. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet [J]. Appl Phys Express,2015,8(2):022301-1.
6 Nishi Y, Miyata T, Minami T. Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu2O heterojunction solar cells [J]. J Vac Sci Technol A,2012,30(4):04D103-1.
7 Minami T, Miyata T, Nishi Y. Efficiency improvement of Cu2O-based heterojunction solar cells fabricated using thermally oxidized copper sheets [J]. Thin Solid Films,2014,559(21):105.
8 Nishi Y, Miyata T, Minami T. The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells [J]. Thin Solid Films,2013,528(3):72.
9 Sohn J, Song Sanghun, Nam Dongwoo, et al. Effects of vacuum annealing on the optical and electrical properties of p-type copper-oxide thin-film transistors [J].Semicond Sci Technol,2013,28(1):15005.
10 Dimopoulos T, Pei′c A, Abermann S, et al. Effect of thermal annealing in vacuum on the photovoltaic properties of electrodeposited Cu2O-absorber solar cell [J]. EPJ Photovolt,2014,5:50301-1.
11 Lai Guozhong, Wu Yangwei, Lin Limei, et al. Low resistivity of N-doped Cu2O thin films deposited by rf-magnetron sputtering [J]. Appl Surf Sci,2013,285:755.
12 Ishizuka S, Okamoto Y, Akimoto K. Properties of polycrystalline Cu2O thin-films doped with N or Si as an acceptor dopant [J]. Solid Stata Phenomena,2003,93:313.
13 Ishizuka S, Kato S, Maruyama T, et al. Nitrogen doping into Cu2O thin films deposited by reactive radio-frequency magnetron sputtering [J]. Jpn J Appl Phys,2001,40(4):2765.
14 Li B B, Lin L, Shen H L, et al. Effect of N doping on hole density of Cu2O:N films prepared by the reactive magnetron sputtering method [J]. Eur Phys J Appl Phys,2012,58(2):20303.
15 Li H J, Pu C Y, Ma C Y, et al. Growth behavior and optical properties of N-doped Cu2O films [J]. Thin Solid Films,2011,520(1):212.
16 Zi Xingfa, Yang Wen, Yang Pengzhi, et al. Fabrication and optical properties of N-doping Cu2O thin films deposited by RF magnetron sputtering [J]. J Optoelectronics·Laser,2014,25(9):1727(in Chinese).
自兴发,杨雯,杨培志,等. RF磁控溅射制备N掺杂Cu2O薄膜及光学特性研究[J]. 光电子·激光,2014,25(9):1727.
17 Mittiga A, Salza E, Sarto F, et al. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate[J]. Appl Phys Lett,2006,88(16):163502-1.
18 Noda S, Shima H, Akinaga H. Highly oriented polycrystalline Cu2O film formation using RF magnetron sputtering deposition for solar cells [J]. AIP Conf Proc,2014,1585:9.
19 Muñoz-Rojas D, Jordan M, Yeoh C, et al. Growth of 5 cm2·V-1·s-1 mobility, p-type copper(Ⅰ) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225 ℃ and below [J]. AIP Adv,2012,2:042179-1.
20 Nakano Y, Saeki S, Morikawa T. Optical bandgap widening of p-type Cu2O films by nitrogen doping [J]. Appl Phys Lett,2009,94(94):022111-1.
21 Zi Xingfa, Huang Wenqing, Liu Ruiming, et al. Structural and optical properties of annealed Cu2O thin films [J]. J Optoelectronics·Laser,2015,26(10):1931(in Chinese).
自兴发,黄文卿, 刘瑞明,等. 退火Cu2O薄膜的结构及光学特性[J].光电子·激光,2015,26(10):1931.
22 Alnes M E, Monakhov E, Fjellva H, et al. Atomic layer deposition of copper oxide using copper(Ⅱ) acetylacetonate and ozone [J].Chem Vap Depos,2012,18(4):173.
23 Soumyo Chatterjee, Sudip K Saha, Amlan J Pal. Formation of all-oxide solar cells in atmospheric condition based on Cu2O thin-films grown through SILAR technique [J]. Solar Energy Mater Solar Cells,2016,147:17.
24 Ran Fanyong, Masataka Taniguti, Hideo Hosono, et al. Analyses of surface and interfacial layers in polycrystalline Cu O thin-film transistors [J]. J Disp Technol,2015,11(9):720.
25 Junqiang Li, Zengxia Mei, Lishu Liu, et al. Probing defects in nitrogen-doped Cu2O [J]. Sci Rep,2014,4(7240):1.
26 Nakano Y, Saeki S, Morikawa T. Optical bandgap widening of p-type Cu2O films by nitrogen doping [J]. Appl Phys Lett,2009,94(94):022111-1.
27 Yun Seog Lee, Jaeyeong Heo, Mark T Winkler,et al. Nitrogen-doped cuprous oxide as a p-type hole transporting layer in thin-film solar cells[J]. J Mater Chem A,2013,1:15416.
28 Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293(13):270.
[1] 赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
[2] 辜敏, 吴亚珍. 阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理[J]. 材料导报, 2023, 37(5): 21030296-6.
[3] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[4] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[5] 莫若飞. 多孔腔骰子形和六足形氧化亚铜的水热合成[J]. 材料导报, 2020, 34(Z1): 148-152.
[6] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[7] 贺春林,高建君,王苓飞,马国峰,刘岩,王建明. N2流量对反应共溅射TiN/Ni纳米复合膜结构和结合强度的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2038-2042.
[8] 潘书万,庄琼云,陈松岩,黄巍,李成,郑力新. 硅(100)衬底表面快速热退火制备硒纳米晶薄膜的结晶动力学[J]. 《材料导报》期刊社, 2018, 32(11): 1928-1931.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed