Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 16-20    https://doi.org/10.11896/j.issn.1005-023X.2017.016.004
  材料研究 |
用于锂离子电池的高性能SiOx/C/石墨烯复合负极材料*
李文超1,2,3, 王英2,3, 唐仁衡2,3, 夏文明2,3, 肖方明2,3, 王华昆1, 黄玲2,3, 孙泰2,3
1 昆明理工大学材料科学与工程学院,昆明650093;
2 广东省稀土开发及应用重点实验室, 广州 510650;
3 广东省稀有金属研究所,广州510650
A High-performance SiOx/C/graphene Composite Anode for Lithium Ion Batteries
LI Wenchao1,2,3, WANG Ying2,3, TANG Renheng2,3, XIA Wenming2,3, XIAO Fangming2,3, WANG Huakun1, HUANG Ling2,3, SUN Tai2,3
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Guangdong Province Key Laboratory of Rare Earth Development and Application, Guangzhou 510650;
3 Guangdong Research Institute of Rare Metals, Guangzhou 510650
下载:  全 文 ( PDF ) ( 1811KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以SiO、丁苯橡胶(SBR)及石墨烯为原料,通过高温歧化、机械球磨、喷雾干燥和高温热解制备电化学性能优异的锂离子电池SiOx/C/石墨烯复合负极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)和恒流充放电测试仪对复合材料的物相、颗粒形貌及电化学性能等进行表征。结果表明,热解后的SiOx/C/石墨烯复合负极材料的首次放电容量为1 807 mAh/g,100次循环后,可逆容量高达1 349 mAh/g,库伦效率为99.1%,循环稳定性远高于SiOx/C和SiOx/C/graphene前驱体,具有良好的倍率性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文超
王英
唐仁衡
夏文明
肖方明
王华昆
黄玲
孙泰
关键词:  锂离子电池  SiOx/C/石墨烯负极材料  高温热解  循环性能    
Abstract: A SiOx/C/graphene composite anode for lithium ion batteries with excellent electrochemical performance was prepared from SiO, SBR and graphene via the disproportionation treatment of SiO at high temperature, mechanical milling, spray drying and pyrolysis. The phase composition, morphology and electrochemical performance of the composites were detected by X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy disperse spectroscopy (EDS) and constant current charge-discharge test. The electrochemical test results revealed that the initial discharge capacity of pyrolytic SiOx/C/graphene composite anode material was 1 807 mAh/g. The reversible capacity reached 1 349 mAh/g and the Coulombic efficiency was 99.1% after 100 cycles, indicating a much higher cyclic stability compared to the SiOx/C and SiOx/C/graphene precursors, along with a good rate performance.
Key words:  lithium-ion battery    SiOx/C/graphene anode material    high-temperature pyrolysis    cyclic performance
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TM912.9  
基金资助: 广东省自然科学基金(2014A030308015); 广东省省级科技计划项目(2015B010116002)
通讯作者:  王英:通讯作者,女,1971年生,硕士,教授级高级工程师,研究方向为电池材料 E-mail:wy2228086@163.com   
作者简介:  李文超:男,1992年生,硕士研究生,研究方向为锂离子电池材料 E-mail:1141689502@qq.com
引用本文:    
李文超, 王英, 唐仁衡, 夏文明, 肖方明, 王华昆, 黄玲, 孙泰. 用于锂离子电池的高性能SiOx/C/石墨烯复合负极材料*[J]. 《材料导报》期刊社, 2017, 31(16): 16-20.
LI Wenchao, WANG Ying, TANG Renheng, XIA Wenming, XIAO Fangming, WANG Huakun, HUANG Ling, SUN Tai. A High-performance SiOx/C/graphene Composite Anode for Lithium Ion Batteries. Materials Reports, 2017, 31(16): 16-20.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.004  或          https://www.mater-rep.com/CN/Y2017/V31/I16/16
1 Kasavajjula U, Wang C, Appleby A J.Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. J Power Sources,2007,163(2):1003.
2 Mohri M, Yanagisawa N, Tajimay Y, et al.Rechargeable lithium battery based on pyrolytic carbon as a negative electrode[J]. J Po-wer Sources,1989,26(3-4):545.
3 Fan Yanwei, Zhou Bukang, Wang Junhua, et al.Preparation and thermal-sensitive characteristic of copper doped n-type silicon mate-rial[J]. J Semicond,2015,36(1):013004.
4 Yin J, Wada M, Yamamoto K, et al.Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries[J]. J Electrochem Soc,2006,153(3):A472.
5 MiyachiI M, Yamamoto H, Kawai H, et al.Analysis of SiO anodes for lithium-ion batteries[J]. J Electrochem Soc,2005,152(10):4803.
6 Yang J, Takeda Y, Imanishi N, et al.SiOx-based anodes for secon-dary lithium batteries[J]. Solid State Ionics,2002,52(12):125.
7 Doh C H, Shin H M, Kim D S H, et al.Improved anode perfor-mance of thermally treated SiO/C composite with an organic solution mixture[J]. Electrochem Commun,2008,10(2):233.
8 Gauthier M, Mazouzi D, Reyter D, et al.A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries[J]. Energy Environ Science,2013,6(7):2145.
9 Li M, Zeng Y, Ren Y, et al.Fabrication and lithium storage perfor-mance of sugar apple-shaped SiOx @C nanocomposite spheres[J]. J Power Sources,2015,288:53.
10 Shi Changchuan, Yang Xuelin, Zhang Lulu, et al. High-perfor-mance SiO/C/G composite anode for lithium ion batteries[J]. J Ino-rg Mater,2013,28(9):943(in Chinese).
石长川,杨学林,张露露,等.高性能锂离子电池SiO/C/G复合负极材料研究[J]. 无机材料学报,2013,28(9):943.
11 Morita T, Takami N.Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries[J]. J Electrochem Soc,2006,153(2):A425.
12 Park C M, Choi W, Hwa Y, et al.Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries[J]. J Mater Chem,2010,20(23):4854.
13 Hwa Y, Park C M, Sohn H J.Modified SiO as a high performance anode for Li-ion batteries[J]. J Power Sources,2013,222(2):129.
14 Lv P, Zhao H, Gao C, et al.Highly efficient and scalable synthesis of SiOx /C composite with core-shell nanostructure as high-perfor-mance anode material for lithium ion batteries[J]. Electrochim Acta,2015,152:345.
15 Meng J, Cao Y, Suo Y, et al.Facile fabrication of 3D SiO2 @graphene aerogel composites as anode material for lithium ion batteries[J]. Electrochim Acta,2015,176:1001.
16 Cao Zhidong, Yu Yingchun, Xiong Yong,et al. Study of thermal decomposed carbon materials used as anode of lithium-ion secondary battery[J]. J Fudan Univ: Nat Sci,1999,38(1):93(in Chinese).
曹志东,余晴春,熊勇,等.锂离子电池负极热解碳材料的研究[J]. 复旦学报:自然科学版,1999,38(1):93.
17 Kim K W, Park H, Lee J G, et al.Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries[J]. Electrochim Acta,2013,103(8):226.
18 Chen X, Li X, Ding F, et al.Conductive rigid skeleton supported si-licon as high-performance Li-ion battery anodes[J]. Nano Lett,2012,12(8):4124.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[3] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[4] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[5] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[6] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[7] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[8] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[9] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[10] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[11] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[12] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[13] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[14] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[15] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed