Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 29-32    https://doi.org/10.11896/j.issn.1005-023X.2017.02.006
  材料研究 |
过渡金属离子掺杂对磷酸铁锂性能的影响*
叶长福, 郑会元, 劳铭, 周文政, 郭进, 黎光旭
广西大学物理科学与工程技术学院,广西高校新能源材料及相关技术重点实验室, 南宁 530004;
Effect of Transition Metal Ions Doping on the Performance of LiFePO4/C Cathode Material
YE Changfu, ZHENG Huiyuan, LAO Ming, ZHOU Wenzheng, GUO Jin, LI Guangxu
Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology,College of Physics Science and Technology, Guangxi University, Nanning 530004;
下载:  全 文 ( PDF ) ( 1619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以碳酸锂、草酸亚铁、磷酸二氢铵、葡萄糖为原料,添加不同的过渡金属乙酸盐(乙酸锰、乙酸钴、乙酸镍、乙酸锌),在氩气保护下采用高温固相法制备LiFePO4/C复合材料。采用X射线衍射、扫描电子显微镜、同步热分析、恒电流充放电、电化学阻抗、循环伏安等方法研究掺杂金属离子及掺杂量对LiFePO4/C晶体结构和电化学性能的影响。结果表明, LiFe0.9M0.1PO4/C(M=Mn、Co、Ni、Zn)样品的晶体结构均与橄榄石型LiFePO4相同。掺杂过渡金属阳离子可以提高LiFePO4/C的还原电位,降低氧化电位,缩小氧化还原峰间距,提高化学反应的可逆性。掺杂后的样品在5C下的放电性能较好,以LiFe0.9Ni0.1PO4/C的放电容量最高,达到89 mAh/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶长福
郑会元
劳铭
周文政
郭进
黎光旭
关键词:  LiFePO4/C  复合材料  过渡金属  掺杂    
Abstract: By adding different transition metal acetates(manganese acetate, cobaltous acetate, nickel acetate, zinc acetate), LiFePO4/C composite materials were synthesized for lithium rechargeable batteries by high temperature solid-state reaction under the protection of argon, using Li2CO3, FeC2O4·2H2O, NH4H2PO4 , C6H12O6 (glucose) as raw materials. Effect of doping transition metal ions on crystal structure and performance of the sample was investigated by using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, galvanostatic charge discharge and electrochemical impedance spectroscopy, cyclic voltammetry. The results indicated that LiFe0.9M0.1PO4/C(M=Mn, Co, Ni, Zn) and LiFePO4 have the same crystal structure of olivine-style. Doping transition metal ions can increase the reduction potential of LiFePO4/C, decrease the oxidation potential, reduce the distance between redox peaks, and improve the reversibility of the chemical reaction. The doped samples have a better discharge performance at 5C, especially LiFe0.9Ni0.1PO4/C which has the highest discharge specific capacity reaching 89 mAh/g.
Key words:  LiFePO4/C    composite material    transition metal    doping
               出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TM912.9  
基金资助: *国家自然科学基金(61264006); 广西自然科学基金(2014GXNSFAA118340); 广西自然科学基金杰出青年基金(2013GXNSFGA019007)
作者简介:  叶长福:男,1986年生,硕士,研究方向为锂离子电池 E-mail:chfuye@163.com 黎光旭:通讯作者,1977年生,副教授,从事能源材料研究 E-mail:gxli@gxu.edu.cn
引用本文:    
叶长福, 郑会元, 劳铭, 周文政, 郭进, 黎光旭. 过渡金属离子掺杂对磷酸铁锂性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 29-32.
YE Changfu, ZHENG Huiyuan, LAO Ming, ZHOU Wenzheng, GUO Jin, LI Guangxu. Effect of Transition Metal Ions Doping on the Performance of LiFePO4/C Cathode Material. Materials Reports, 2017, 31(2): 29-32.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.006  或          http://www.mater-rep.com/CN/Y2017/V31/I2/29
1 Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nat Mater,2002,1(2):123.
2 Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics,2002,148(1-2):45.
3 Zaghib K, Charest P, Guerfi A, et al. LiFePO4 safe Li-ion polymer batteries for clean environment [J]. J Power Sources,2005,146(1-2):380.
4 Striebel K, Shim J, Sierra A, et al. The development of low cost LiFePO4-based high power lithium-ion batteries[J]. J Power Sources,2005,146(1-2):33.
5 Chen Z Y, Zhu H L, Zhu W, et al. Electrochemical performance of carbon nanotube-modified LiFePO4 cathodes for Li-ion batteries[J]. Trans Nonferrous Metals Soc China,2010,20(4):614.
6 Zhang X S, Tang R H, Xiao F M, et al. Effects of Cr doping on structure and electrochemical performance of LiFePO4/C[J]. Mater Rev:Res,2014,28(8):44(in Chinese).
章兴石,唐仁衡,肖方明,等.Cr3+对LiFePO4/C材料结构和电化学性能的影响[J].材料导报:研究篇,2014,28(8):44.
7 Feng X S, Mo X Y, Yu C J, et al. Study on preparation and modification of LiFePO4/C cathode material for lithium rechargeable batteries doping metal ions[J]. Mater Rev:Res,2012,26(10):33(in Chinese).
冯晓叁,莫祥银,俞琛捷,等.锂离子电池LiFePO4/C复合正极材料掺杂金属离子的制备及改性研究[J].材料导报:研究篇,2012,26(10):33.
8 Wang Y, Huang W H, Xiao Z P, et al. Study on synthesis and performances of lithium iron phosphate as cathode materials by Mg-doping[J]. Mater Rev:Res,2013,27(12):40(in Chinese).
王英,黄文浩,肖志平,等.镁掺杂改性磷酸铁锂正极材料及其性能研究[J].材料导报:研究篇,2013,27(12):40.
9 Cheng F,Wan W,Tan Z, et al. High power performance of nano-LiFePO4/C cathode material synthesized via lauric acid-assisted so-lid-state reaction[J]. Electrochim Acta,2011,56(8):2999.
10 Liu Y, Cao C, Li J. Enhanced electrochemical performance of carbon nanospheres-LiFePO4 composite by PEG based sol-gel synthesis[J]. Electrochim Acta,2010,55(12):3921.
11 Konarova M, Taniguchi I. Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling[J]. J Power Sources,2009,194(2):1029.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[3] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[4] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[5] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[6] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[7] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[8] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[9] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[10] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[11] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[12] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[13] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[14] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[15] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed