Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 11-15    https://doi.org/10.11896/j.issn.1005-023X.2017.010.003
  材料研究 |
预歧化处理的高性能锂离子电池SiO/C负极材料*
夏文明1,2,唐仁衡2,王辉1,王英2,肖方明2,朱敏1,孙泰2
1 华南理工大学材料科学与工程学院,广东省先进储能材料重点实验室, 广州 510641;
2 广东省稀有金属研究所,广东省稀土开发及应用重点实验室, 广州 510650
High-performance SiO/C Anode Material in Li-ion Battery by Pre-disproportionation Treatment
XIA Wenming1,2, TANG Renheng2, WANG Hui1, WANG Ying2,XIAO Fangming2, ZHU Min1, SUN Tai2
1 Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641;
2 Guangdong Province Key Laboratory of Rare Earth Development and Application, Guangdong Research Institute of Rare Metals, Guangzhou 510650
下载:  全 文 ( PDF ) ( 1323KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以SiO和蔗糖为原料,SiO经高温歧化反应处理后,通过机械球磨、喷雾干燥、高温热解工艺制备出具有优异电化学性能的锂离子电池SiO/C负极材料。经XRD、FTIR、XPS、SEM、TEM结构分析表明,歧化反应处理的片状SiO包含非晶态SiO和纳米晶相Si、SiO2,蔗糖热解形成的无定形碳包覆在细片状SiO的表面,组成球形SiO/C颗粒。电化学测试结果表明,预歧化处理的SiO/C复合材料的首次放电容量为1 314.6 mAh/g,首次库伦效率达到71%;100周循环后的放电容量为851.2 mAh/g,容量保持率达到78.5%,循环稳定性远高于未经歧化处理的SiO/C复合材料。电化学性能的提高归因于SiO预歧化反应及热解碳包覆。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏文明
唐仁衡
王辉
王英
肖方明
朱敏
孙泰
关键词:  锂离子电池  SiO/C负极材料  歧化反应  循环性能    
Abstract: Starting from the SiO and sucrose, a SiO/C composite for Li-ion battery anode material with excellent electrochemical performance was prepared by the disproportionation treatment of SiO at high temperature, which was followed by mechanical milling, spray drying and pyrolysis. XRD, FTIR, XPS, SEM, TEM analysis indicated that there exist amorphous SiO, crystalline Si and SiO2 in the disproportionated SiO plates, and the prepared spherical SiO/C particles were composed of refined SiO plates, which were coated with pyrolyzed disordered carbon. The pre-disproportionated SiO/C composite exhibited an initial discharge capacity of 1 314.6 mAh/g with an initial Coulombic efficiency of 71% at 100 mA/g, and a discharge capacity of 851.2 mAh/g after 100 cycles. The capacity retention of disproportionated SiO/C composite was 78.5%, which was much higher than that for undisproportionated SiO/C composite. The excellent electrochemical performances are attributed to the disproportionation of SiO and the pyrolytic carbon coating.
Key words:  lithium-ion batteries    SiO/C anode material    disproportionation reaction    cyclic performance
                    发布日期:  2018-05-08
ZTFLH:  TM912.9  
基金资助: *广东省省级科技计划项目(2015B010116002);广东省自然科学基金(2014A030308015)
通讯作者:  王辉,男,1974年生,博士,教授,博士研究生导师,研究方向为纳米功能材料E-mail:mehwang@scut.edu.cn   
作者简介:  夏文明:男,1990年生,硕士研究生,研究方向为锂离子电池负极材料E-mail:1084000825@qq.com
引用本文:    
夏文明,唐仁衡,王辉,王英,肖方明,朱敏,孙泰. 预歧化处理的高性能锂离子电池SiO/C负极材料*[J]. 材料导报编辑部, 2017, 31(10): 11-15.
XIA Wenming,TANG Renheng, WANG Hui, WANG Ying,XIAO Fangming, ZHU Min, SUN Tai. High-performance SiO/C Anode Material in Li-ion Battery by Pre-disproportionation Treatment. Materials Reports, 2017, 31(10): 11-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.003  或          http://www.mater-rep.com/CN/Y2017/V31/I10/11
1 Yu B C, Hwa Y, Kim J H,et al. A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites[J]. Electrochim Acta,2014,117(4):426.
2 Zhou M, Pu F, Wang Z, et al. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries[J]. Phys Chem Chem Phys Pccp,2013,15(27):11394.
3 Tu J, Yuan Y, Zhan P, et al. Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance[J]. J Phys Chem C,2014,118(14):7357.
4 Ren Y, Li M. Si-SiOx-cristobalite/graphite composite as anode for Li-ion batteries[J]. Electrochim Acta,2014,142(142):11.
5 Zhang H, Braun P V. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes[J]. Nano Lett,2012,12(6):2778.
6 Shi J, Liang Y, Li L, et al. Evaluation of the electrochemical cha-racteristics of silicon/lithium titanate composite as anode material for lithium ion batteries[J]. Electrochim Acta,2015,155(29):125.
7 Zheng Y, et al. Magnesium cobalt silicate materials for reversible magnesium ion storage[J]. Electrochim Acta,2012,66(4):75.
8 Ji L, Zhang X. Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries[J]. Electrochem Commun,2009,11(3):684.
9 Yu B C, Hwa Y, Park C M, et al. Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries[J]. J Mater Chem A,2013,1(1):4820.
10 Wang J, Hou X H, Li M, et al. Preparation and Li-intercalating performance research of SiO/C as anode materials for Li-ion battery[J]. Chin Battery Ind,2013,18(3):147(in Chinese).
王洁, 侯贤华, 李敏,等. 锂离子电池SiO/C负极材料制备与嵌锂性能研究[J]. 电池工业,2013,18(3):147.
11 Hwa Y, Park C M, Sohn H J, et al. Modified SiO as a high performance anode for Li-ion batteries[J]. J Power Sources,2013,222(2):129.
12 Chung C K, Chen T Y, Lai C W, et al. Low-temperature formation of nanocrystalline SiC particles and composite from three-layer Si/C/Si film for the novel enhanced white photoluminescence[J]. J Nanopart Res,2011,13(10):4821.
13 Kim J H, Park C M, Kim H,et al. Electrochemical behavior of SiO anode for Li secondary batteries[J]. J Electroanal Chem,2011,661(1):245.
14 Guo C, Wang D, Liu T, et al. A three dimensional SiOx/C@RGO nanocomposite as a high energy anode material for lithium-ion batte-ries[J]. J Mater Chem A,2014,2(10):3521.
15 Dong J L, Ryou M H,Lee J N, et al. Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries[J]. Electrochem Commun,2013,34(5):98.
16 He Y, Yu X, Li G, et al. Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction[J]. J Power Sources,2012,216(11):131.
17 Kajita T, Yuge R, Nakahara K, et al. Deterioration analysis in cycling test at high temperature of 60 degrees C for Li-ion cells using SiO anode[J]. J Electrochem Soc,2014,161(5):A708.
18 Kim K W, Park H, Lee J G, et al. Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries[J]. Electrochim Acta,2013,103(8):226.
19 Chen X, Li X, Ding F, et al. Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes[J]. Nano Lett,2012,12(8):4124.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[4] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[5] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[6] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[7] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[8] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[9] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[10] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[11] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[12] 李严, 王欣, 黄金田. 沙柳活性炭纤维改性及其对铅离子的吸附性能[J]. 《材料导报》期刊社, 2018, 32(14): 2360-2365.
[13] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[14] 李祥,郑峰,罗援,罗泳梅. 超级电容器活性炭/MnO2复合电极材料的制备及性能[J]. 《材料导报》期刊社, 2018, 32(12): 1949-1954.
[15] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed