Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1779-1786    https://doi.org/10.11896/j.issn.1005-023X.2018.11.002
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
面向可充电电池的锂金属负极的枝晶生长:理论基础、影响因素和抑制方法
梁杰铬,罗政,闫钰,袁斌
华南理工大学材料科学与工程学院,广州 510640
Dendrite Growth of Lithium Metal Anode for Rechargeable Batteries: Theoretical Basis, Influencing Factors and Inhibition Methods
LIANG Jiege, LUO Zheng, YAN Yu, YUAN Bin
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 1885KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在全球能源与环境问题日趋紧迫的大背景下,可再生能源的获取与利用途径及高效安全的储能技术的研发一直是工业界和科学界关注的热点之一。锂离子二次电池作为能量存储器件,拥有高比能量、长循环寿命等优点,近十几年来其研究取得了长足进展,并在各类便携式电子设备和电动交通工具中获得了广泛应用。然而,随着各种高性能设备的不断涌现,商业化的锂离子电池越来越难以满足其在能量密度、循环稳定性和安全性等方面的要求。
    为了进一步提高锂离子电池的能量密度,需要开发出高比容量的负极材料(硅、锡和锂等)以取代传统石墨负极。硅、锡等新式负极材料通过与锂离子反应形成含锂化合物的原理来存储与释放锂离子,完成电池的一个充放电过程。这个过程往往伴随着负极材料体积的剧烈变化,经历较长时间循环使用后会导致负极材料的粉化甚至从集流体上剥离,引起电池容量迅速衰减甚至失效。而锂负极通过锂在负极上的溶解和沉积来完成电池的充放电过程,该过程不存在反应相变所导致的体积变化。另外,锂金属负极材料具有极高的质量比容量(3 860 mAh/g)、低密度(0.59 g/cm3)和低的还原电位(-3.04 V,相比于氢标准电极),被认为是一种理想的可充电电池负极材料。然而,锂的枝晶生长、锂金属电池低的库伦效率和锂的无主体沉积引起的体积膨胀等一些关键问题长期以来制约着锂负极的商业应用。
    锂的每次沉积都会产生枝晶,在充放电循环中,锂枝晶会导致电池内部短路甚至发生爆炸,带来严重的安全问题。除此之外,锂枝晶还会增加负极表面积,新暴露的锂金属会与电解液反应生成固态电解质膜(Solid electrolyte interface, SEI),这会损耗活性材料以及降低电池的库伦效率。为了解决以上问题,研究者们对锂金属电极进行了许多探索,尤其是在锂枝晶生长的机理及其抑制方法方面。一些理论模型如扩散模型、SEI保护模型、电荷诱导生长模型和薄膜生长模型等,以及与这些模型相对应的一些抑制方法如均匀锂离子流法、SEI膜保护法、稳定沉积主体法和静电屏蔽保护法等被提出。这些抑制方法能够在一定程度上缓解锂枝晶的生长问题,但都未能达到商业化应用的要求。
    本文总结了近几年研究人员针对锂离子电池锂金属负极的一些重要研究,系统地介绍了业内较为认同的枝晶生长模型和影响因素,并着重叙述了抑制枝晶生长的方法及成效,最后就锂金属负极将来的研究方向给出一些建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁杰铬
罗政
闫钰
袁斌
关键词:  锂金属  枝晶生长  负极    
Abstract: The worldwide increasingly tough circumstance of energy and environment urges the continuous and intensive inte-rest both in industry and in science upon the utilization of renewable energy sources and the development of efficient and safe energy storage techniques. Lithium-ion secondary batteries are a kind of high-specific-capacity and long-cycle-life energy storage devices which over the past decade have acquired considerable and fruitful research attentions and found wide applications in a rich variety of portable electronic devices and electric vehicles. On the other hand, the fast emergence of high-performance electronics has exaggera-ted the requirements of energy density, cycle stability and safety to a remotely high level for the commercialized lithium ion batteries.
    For the sake of increasing Li-ion batteries’ energy density, anode materials with high capacity, e.g. silicon, tin, lithium, have been developed to substitute for the conventional graphite anode. Either silicon or tin anode stores and releases Li ions by reacting with them and forming lithium-containing compounds within a charge-discharge process, which generally accompanies huge volume change of the anode. This will cause these anode materials to be pulverized or even stripped from the current collector after expe-rienced relatively long time usage, and in consequence, the rapid fading of battery capacity and even failure. By contrast, Li metal anode’s charge-discharge process is based on dissolution/deposition of lithium on the current collector, and this process involves no reaction-phase-transition-induced volume change. Furthermore, lithium metal is regarded as an ideal candidate material for rechar-geable batteries due to its high theoretical specific capacity (3 860 mAh/g), low density (0.59 g/cm3) and the lowest electrochemical potential (-3.04 V vs RHE) within all anodes. Unfortunately, some key issues, such as Li dendrite growth, low columbic efficiency and uncontrolled-deposition-induced volume expansion, have restrained the commercialization of Li metal anodes.
    Each time of lithium deposition will cause the growth of dendrites, and thus the Li dendrites will lead to internal short circuits and even battery explosion, which is considered as a serious safety problem. In addition, lithium dendrites will also increase the anode surface area, enabling the reaction between newly exposed lithium and electrolyte to form solid electrolyte interphase (SEI) that causes low columbic efficiency. In order to solve these problems, researchers have done a lot of studies on the lithium metal anodes, especially on the mechanism and inhibition methodology of dendrite growth. There have been proposed several theoretical models which describe the formation and growth behavior of Li dendrites, including diffusion model, SEI protection model, charge-induced growth model and film growth model, and furthermore, the corresponding inhibition solutions, such as uniform lithium ion flux method, SEI protection method, host-assisted stable deposition and electrostatic shielding method. By adopting these methods, the growth of lithium dendrites can be alleviated to a certain extent, but still the Li metal anodes are unsatisfactory for commercialization.
    Herein, we summarize the global research works of lithium metal anode in recent years, introduce systematically several gene-rally recognized Li dendritic growth models and the corresponding influencing factors, and emphatically clarify the inhibition methods of dendrite growth and their effectiveness. Finally, we also put forward some suggestions for the future research direction of lithium metal anodes.
Key words:  Limetal    dendritegrowth    anode
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TM912  
基金资助: 国家自然科学基金(51571090);广东省自然科学基金重大基础培育项目(2017B030308001)
作者简介:  梁杰铬:男,1995年生,硕士研究生,主要研究方向为锂金属负极 袁斌:通信作者,男,1977年生,博士,教授,主要研究方向为多孔金属材料和锂离子电池材料 E-mail:apsheng@scut.edu.cn
引用本文:    
梁杰铬, 罗政, 闫钰, 袁斌. 面向可充电电池的锂金属负极的枝晶生长:理论基础、影响因素和抑制方法[J]. 《材料导报》期刊社, 2018, 32(11): 1779-1786.
LIANG Jiege, LUO Zheng, YAN Yu, YUAN Bin. Dendrite Growth of Lithium Metal Anode for Rechargeable Batteries: Theoretical Basis, Influencing Factors and Inhibition Methods. Materials Reports, 2018, 32(11): 1779-1786.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.002  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1779
1 Keywords to understanding Sony energy devices[EB/OL].http:∥www.sonyenergy-devices.co.jp/en/keyword/.
2 Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective[J].Journal of the American Chemical Society,2013,135(4):1167.
3 Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414:359.
4 Liang Chu,Zhou Luoting,Xia Yang,et al.Lithium storage mechanism and progress in electrochemical modification of silicon as anode materials[J].Journal of Functional Materials,2016,47(8):8043(in Chinese).
梁初,周罗挺,夏阳,等.硅负极材料的储锂机理与电化学改性进展[J].功能材料,2016,47(8):8043.
5 Ma Lin,Ye Jianbo,Huang Guochuang,et al.Synthesis and electrochemical Li-storage performance of SnS2-SnO2/graphene composites[J].Surface Technology,2015(1):8(in Chinese).
马琳,叶剑波,黄国创,等.SnS2-SnO2/石墨烯复合材料的合成及其电化学储锂性能的研究[J].表面技术,2015(1):8.
6 Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J].Nature Materials,2012,11:19.
7 Aurbach D, Zinigrad E, Teller H, et al. Factors which limit the cycle life of rechargeable lithium (metal) batteries[J].Journal of the Electrochemical Society,2000,147(4):1274.
8 Orbakh D. Nonaqueous electrochemistry[M].New York:Marcel Dekker,1999.
9 Wang D, Zhang W, Zheng W, et al. Towards high-safe lithium me-tal anodes: Suppressing lithium dendrites via tuning surface energy[J].Advanced Science,2017,4(1):1600168.
10 Rosso M, Brissot C, Teyssot A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J].Electrochimica Acta,2006,51(25):5334.
11 Brissot C, Rosso M, Chazalviel J N, et al. Dendritic growth mechanisms in lithium/polymer cells[J].Journal of Power Sources,1999,s81-82(9):925.
12 Yamaki J I, Tobishima S I, Hayashi K, et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte[J].Journal of Power Sources,1998,74(2):219.
13 Ding F, Xu W, Graff G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J].Journal of the American Chemical Society,2013,135(11):4450.
14 Ye W, Shen C, Tian J, et al. Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin po-rous silicon layer[J].Electrochemistry Communications,2008,10(4):625.
15 Liu S, Imanishi N, Zhang T, et al.Lithium dendrite formation in Li/poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl) imide and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) i-mide/Li cells[J].Journal of the Electrochemical Society,2010,157(10):A1092.
16 Rosso M, Gobron T, Brissot C, et al. Onset of dendritic growth in lithium/polymer cells[J].Journal of Power Sources,2001,97:804.
17 Teyssot A, Belhomme C, Bouchet R, et al. Inter-electrode in situ concentration cartography in lithium/polymer electrolyte/lithium cells[J].Journal of Electroanalytical Chemistry,2005,584(1):70.
18 Brissot C, Rosso M, Chazalviel J N, et al. In situ, study of dendritic growth inlithium/PEO-salt/lithium cells[J].Electrochimica Acta,1998,43(10-11):1569.
19 Mayers M Z, Kaminski J W, Iii T F M. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J].Journal of Physical Chemistry C,2015,116(50):26214.
20 Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model[J].Journal of the Electrochemical Society,1979,126(12):2047.
21 Fan L, Zhuang H L, Gao L, et al. Regulating Li deposition at artificial solid electrolyte interphases[J].Journal of Materials Chemistry A,2017,5(7):3483.
22 Peled E. Film forming reaction at the lithium/electrolyte interface[J].Journal of Power Sources,1983,9(3):253.
23 Xu K, Day N D, Angell C A. Inorganic electrolyte solutions and gels for rechargable lithium batteries[J].Journal of the Electrochemical Society,1996,143(9):209.
24 Aurbach D, Zaban A. Impedance spectroscope of lithium electrodes: Part 2. The behaviour in propylene carbonate solutions-the significance of the data obtained[J].Journal of Electroanalytical Chemistry,1994,367(1-2):15.
25 Kim S P, Duin A C T V, Shenoy V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study[J].Journal of Power Sources,2011,196(20):8590.
26 Aurbach D, Weissman I, Zaban A, et al. Correlation between surface chemistry, morphology, cycling efficiency and interfacial pro-perties of Li electrodes in solutions containing different Li salts[J].Electrochimica Acta,1994,39(1):51.
27 Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechar-geable batteries[J].Energy & Environmental Science,2014,7(2):513.
28 Cheng X B, Hou T Z, Zhang R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J].Advanced Materials,2016,28(15):2888.
29 Gireaud L, Grugeon S, Laruelle S, et al. Lithium metal stripping/plating mechanisms studies: A metallurgical approach[J].Electrochemistry Communications,2006,8(10):1639.
30 Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J].Nature Nanotechnology,2017,12(3):194.
31 Li Q, Zhu S, Lu Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries[J].Advanced Functional Materials,2017,27(18):1606422.
32 Liu W, Lin D, Pei A, et al. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement[J].Journal of the American Chemical Society,2016,138(47):15443.
33 Yang C P, Yin Y X, Zhang S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J].Nature Communications,2015,6:8058.
34 Yun Q, He Y, Lv W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J].Advanced Materials,2016,28(32):6932.
35 Liang Z, Lin D, Zhao J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophi-lic coating[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(11):2862.
36 Liu Y, Lin D, Liang Z, et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode[J].Nature Communications,2016,7:10992.
37 Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J].Nature Nanotechnology,2016,11(7):626.
38 Basile A, Bhatt A I, O′Mullane A P. Stabilizing lithium metal using ionic liquids for long-lived batteries[J].Nature Communications,2016,7:11794.
39 Li W, Yao H, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J].Nature Communications,2015,6:7436.
40 Wei L, Li W, Zhuo D, et al. Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes[J].ACS Central Science,2017,3(2):135.
41 Kong L L, Zhang Z, Zhang Y Z, et al. Porous carbon paper as interlayer to stabilize the lithium anode for lithium-sulfur battery[J].ACS Applied Materials & Interfaces,2016,8(46):31684.
42 Zhang X, Wang W, Wang A, et al. Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery[J].Journal of Materials Chemistry A,2014,2(30):11660.
43 Gofer Y, Ben-Zion M, Aurbach D. Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries[J].Journal of Power Sources,1992,39(2):163.
[1] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[4] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[5] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[6] 程前, 张婧. 废锂电池负极全组分绿色回收与再生[J]. 材料导报, 2018, 32(20): 3667-3672.
[7] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[8] 丁昂, 张钟元, 程厅, 董星龙. 中空硅纳米球锂离子电池负极材料的制备及电化学性能[J]. 《材料导报》期刊社, 2018, 32(11): 1791-1794.
[9] 陈坚, 徐晖. 石墨烯及其纳米复合材料作为锂离子电池负极的研究进展*[J]. CLDB, 2017, 31(9): 36-44.
[10] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[11] 黄剑锋, 王彩薇, 李嘉胤, 曹丽云, 朱东岳, 席婷. 钠离子电池碳基负极材料的研究进展*[J]. 材料导报, 2017, 31(21): 19-23.
[12] 骈松, 张照, 包羽冲, 刘林, 李日. 基于三维LBM-CA模型模拟Al-4.7%Cu合金的枝晶形貌和成分分布*[J]. 《材料导报》期刊社, 2017, 31(20): 140-146.
[13] 张婷, 李爱菊, 张丽田, 陈红雨. 苯甲酸钠改性石墨作为锂离子电池负极材料的性能[J]. 《材料导报》期刊社, 2017, 31(18): 5-10.
[14] 李文超, 王英, 唐仁衡, 夏文明, 肖方明, 王华昆, 黄玲, 孙泰. 用于锂离子电池的高性能SiOx/C/石墨烯复合负极材料*[J]. 《材料导报》期刊社, 2017, 31(16): 16-20.
[15] 夏文明,唐仁衡,王辉,王英,肖方明,朱敏,孙泰. 预歧化处理的高性能锂离子电池SiO/C负极材料*[J]. 材料导报编辑部, 2017, 31(10): 11-15.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed