Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 719-724    https://doi.org/10.11896/j.issn.1005-023X.2018.05.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
基于Fe/Co-MOF制备的高性能镍铁电池铁电极及其电化学性能
张贺贺, 李芳芳, 王海燕, 彭志光, 唐有根
中南大学化学化工学院,长沙 410083
Iron Electrode Derived from Fe/Co-MOF and Its Electrochemical Performance for Nickel-Iron Batteries
ZHANG Hehe, LI Fangfang, WANG Haiyan, PENG Zhiguang, TANG Yougen
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 2897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁电极是构筑高性能镍铁电池的关键。本文报道了一种基于Fe/Co-MOF制备镍铁电池铁电极的新思路,并系统研究了该材料的电化学性能。XRD、SEM和HRTEM等结果表明,Fe/Co-MOF烧结产物以八面体颗粒为主,主要由Fe3O4相及少量Fe-Co合金构成。作为镍铁电池的阳极时,相比于未加入Co的材料,目标材料的电化学性能得到了明显改善。Fe/Co-MOF烧结产物的放电平台稳定在1.18 V,比Fe-MOF烧结产物的放电平台(1.10 V)高约0.08 V。尽管Fe/Co-MOF烧结产物在前10次循环出现了明显的容量衰减,但之后保持了较好的循环稳定性能,在1.0 A·g-1电流密度下循环90次后比容量稳定在233.1 mAh·g-1,而Fe-MOF烧结后产物的比容量仅为181.2 mAh·g-1。交流阻抗结果显示Fe/Co-MOF烧结产物表现出更低的电荷传递阻抗。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张贺贺
李芳芳
王海燕
彭志光
唐有根
关键词:  Fe3O4  碳复合  金属有机骨架  镍铁电池  阳极    
Abstract: Developing high performance iron electrodes is still a challenge for nickel-iron batteries. In this work, we reported a high-performance iron electrode material derived from Fe/Co-MOF for the first time. As shown by XRD, SEM and TEM analysis, octahedral particles consisted of Fe3O4 phase and trace Fe-Co alloy were obtained by calcining the Fe/Co-MOF precursor. The improved performance of this hybrid as anode materials for nickel-iron batteries in comparison with the Fe-MOF alone was due to the incorporation of an appropriate amount of Co. It showed a discharge plateau at about 1.18 V, which was slightly higher than Fe-MOF (1.10 V). Despite the sharp capacity loss in initial 10 cycles, a stable capacity of 233.1 mAh·g-1 was obtained at a current density of 1.0 A·g-1 after 90 cycles, which was about 181.2 mAh·g-1 higher than that of Fe-MOF derived sample. The improved electrochemical properties may be attributed to the improved electronic conductivity and reduced ion transfer resistance.
Key words:  Fe3O4    carbon composite    metal organic framework    nickel-iron battery    anode material
               出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TM912.9  
基金资助: 国家自然科学基金(21571189;21301193)
通讯作者:  彭志光:通信作者,男,博士,副教授,硕士研究生导师,研究方向为纳米材料、多相催化和功能材料 E-mail:zhgpeng@csu.edu.cn   
作者简介:  张贺贺:男,1994年生,硕士研究生,研究方向为功能材料和器件 E-mail:liffcsu@163.com 唐有根:
引用本文:    
张贺贺, 李芳芳, 王海燕, 彭志光, 唐有根. 基于Fe/Co-MOF制备的高性能镍铁电池铁电极及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(5): 719-724.
ZHANG Hehe, LI Fangfang, WANG Haiyan, PENG Zhiguang, TANG Yougen. Iron Electrode Derived from Fe/Co-MOF and Its Electrochemical Performance for Nickel-Iron Batteries. Materials Reports, 2018, 32(5): 719-724.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.005  或          http://www.mater-rep.com/CN/Y2018/V32/I5/719
1 Li F, Shangguan E, Li J, et al. Influence of annealing temperature on the structure and electrochemical performance of the Fe3O4 anode material for alkaline secondary batteries[J].Electrochimica Acta,2015,178:34.
2 Posada J O G, Hall P J. Towards the development of safe and commercially viable nickel-iron batteries: Improvements to coulombic efficiency at high iron sulphide electrode formulations[J].Journal of Applied Electrochemistry,2016,46(4):451.
3 Wang H, Liang Y, Gong M, et al. An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials[J].Nature Communication,2012,3:917.
4 Guan C, Zhao W, Hu Y, et al. High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes[J].Advanced Energy Materials,2016,6(20):1601034.
5 Liu J, Chen M, Zhang L, et al. A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film[J].Nano Letters,2014,14(12):7180.
6 Jiang W, Liang F, Wang J, et al. Enhanced electrochemical performances of FeOx-graphene nanocomposites as anode materials for alkaline nickel-iron batteries[J].RSC Advances,2014,4(30):15394.
7 Shangguan E, Guo L, Li F, et al. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries[J].Journal of Power Sources,2016,327:187.
8 Shangguan E, Li F, Li J, et al. FeS/C composite as high-perfor-mance anode material for alkaline nickel-iron rechargeable batteries[J].Journal of Power Sources,2015,291:29.
9 Kim E, Yoon M. Facile synthesis of γ-Fe2O3@porous carbon materials using an Fe-based metal-organic framework: Structure and porosity study[J].Journal of Porous Materials,2015,22(6):1495.
10 Han Y, Zhai J, Zhang L, et al. Direct carbonization of cobalt-doped NH2-MIL-53(Fe) for electrocatalysis of oxygen evolution reaction[J].Nanoscale,2016,8(2):1033.
11 Ji Sen L, Shun Li L, Yu Jia T, et al. Nitrogen-doped Fe/Fe3C@ graphitic layer/carbon nanotube hybrids derived from MOFs: Efficient bifunctional electrocatalysts for ORR and OER[J].Chemical Communications (Cambridge),2015,51(13):2710.
12 Zhang L, Wu H B, Madhavi S, et al. Formation of Fe2O3 microbo-xes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties[J].Journal of the American Chemical Society,2012,134(42):17388.
13 Jiang H L, Liu B, Lan Y Q, et al. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake[J].Journal of the American Chemical Society,2011,133(31):11854.
14 Posada J O G, Hall P J. The effect of electrolyte additives on the performance of iron based anodes for Ni/Fe cells[J].Journal of the Electrochemical Society,2015,162(10):A2036.
15 Wu Z S, Yang S, Sun Y, et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J].Journal of the American Chemical Society,2012,134(22):9082.
16 Bhuvaneswari S, Pratheeksha P M, Anandan S, et al. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries[J].Physical Chemistry Chemical Physics,2014,16(11):5284.
17 Liu K, Huang X, Wang H, et al. Co3O4-CeO2/C as a highly active electrocatalyst for oxygen reduction reaction in Al-air batteries[J].ACS Applied Materials & Interfaces,2016,8(50):34422.
18 Liu K, Zhou Z, Wang H, et al. N-doped carbon supported Co3O4 nanoparticles as an advanced electrocatalyst for oxygen reduction reaction in Al-air battery[J].RSC Advances,2016,6:55552.
19 Zhang H, Li H, Wang H, et al. NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction[J].Journal of Power Sources,2015,280:640.
20 Mu J, Chen B, Guo Z, et al. Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials[J].Nanoscale,2011,3(12):5034.
21 Zhang H, Qiao H, Wang H, et al. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery[J].Nanoscale,2014,6(17):10235.
22 Rajan A S, Sampath S, Shukla A K. An in situ carbon-grafted alkaline iron electrode for iron-based accumulators[J].Energy & Environmental Science,2014,7(3):1110.
23 Kao C Y, Chou K S. Iron/carbon-black composite nanoparticles as an iron electrode material in a paste type rechargeable alkaline battery[J].Journal of Power Sources,2010,195(8):2399.
24 Manohar A K, Malkhandi S, Yang B, et al. A high-performance rechargeable iron electrode for large-scale battery-based energy storage[J].Journal of the Electrochemical Society,2012,159(8):A1209.
25 Manohar A K, Yang C, Malkhandi S, et al. Understanding the factors affecting the formation of carbonyl iron electrodes in rechargea-ble alkaline iron batteries[J].Journal of the Electrochemical Society,2012,159(12):A2148.
26 Sun D,Tang Y,Ye D,et al.Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high perfor-mance Li ion batteries[J].ACS Applied Materials & Interfaces,2017,9(6):5254.
27 Sun D, Jin G, Wang H, et al. LixV2O5/LiV3O8 nanoflakes with significantly improved electrochemical performance for Li-ion batte-ries[J].Journal of Materials Chemistry A,2014,2(21):8009.
28 Sun D, Xue X, Tang Y, et al. High-rate LiTi2(PO4)3@N-C composite via bi-nitrogen sources doping[J].ACS Applied Materials & Interfaces,2015,7(51):28337.
[1] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[2] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[3] 孙增智, 薛程, 宋莉芳, 邱树君, 褚海亮, 夏永鹏, 孙立贤. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549.
[4] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[5] 闫静,田晓,赵宣,赵丽娟,杨艳春,陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[6] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[7] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[8] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[9] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[10] 王艳珍, 陈明鸣, 王成扬. 大倍率二氧化硅/碳复合材料的制备及电化学性能表征[J]. 《材料导报》期刊社, 2018, 32(3): 357-361.
[11] 董鸿,孙晓君,张欣,杨豆豆,王雪亮,张凤鸣. 纳米金属有机骨架ZIF-90的制备及载药性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 189-192.
[12] 刘兆文, 李毅波, 黄明辉, 汪必升, 李剑. 阳极氧化处理增强Al-Li合金胶接板剪切强度的机理[J]. 材料导报, 2018, 32(18): 3181-3184.
[13] 郝金蕾, 张桂华, 王艳, 万金泉, 马邕文, 黄礼艳. 固载磷钨酸的大孔道功能化MOFs合成及催化性能[J]. 《材料导报》期刊社, 2018, 32(14): 2475-2480.
[14] 张显峰, 赵朝成, 王德军, 赵媛媛, 张勇, 郭锐. 基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能*[J]. 《材料导报》期刊社, 2017, 31(8): 25-30.
[15] 郭晓亮, 周生刚, 张能锦, 竺培显, 曹勇, 李洪山. 等离子喷涂法制备Al/TiB2复合电极及电化学性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 21-24.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed