Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21085-21090    https://doi.org/10.11896/cldb.21060276
  环境催化材料 |
铁含量对Fe-P-C非晶合金降解亚甲基蓝性能的影响
马娅娅1,2, 李强1,2, 穆保霞1,2, 马旭1,2
1 新疆大学新疆固态物理与器件重点实验室,乌鲁木齐 830046
2 新疆大学物理科学与技术学院,乌鲁木齐 830046
Effect of Iron Content on the Degradation of Methylene Blue in Fe-P-C Amorphous Alloy
MA Yaya1,2, LI Qiang1,2, MU Baoxia1,2, MA Xu1,2
1 Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, 830046, China
2 School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
下载:  全 文 ( PDF ) ( 14812KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文制备了四种不同铁含量的Fe80+2xP10-xC10-x(x=0, 1, 2, 3 (原子分数,%))非晶合金条带,通过类芬顿反应催化降解亚甲基蓝(Methylene blue,MB)溶液对它们性能的影响进行比较研究,探讨铁含量对铁基非晶合金降解性能的影响。结果表明,目前Fe-P-C非晶合金条带通过类芬顿反应降解MB表现出优异的性能,且铁含量越高,降解性能越好,但当铁含量超过82%后,铁含量对降解性能的影响不显著。由表面形貌观察可知,随着Fe含量的增加,反应后的Fe-P-C非晶条带表面呈现更加疏松多孔的结构,这有利于获得高的降解效率。循环降解测试显示,四种不同铁含量Fe-P-C非晶合金条带的降解性能差别不大,且均具有较长的使用寿命,这可能与降解过程中形成具有松散片层状结构和3D花状网格结构的表面形态有关。X射线电子能谱分析结果表明,Fe含量的不同并不影响Fe-P-C非晶合金的降解反应机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马娅娅
李强
穆保霞
马旭
关键词:  铁基非晶合金  类芬顿反应  亚甲基蓝(MB)  降解    
Abstract: In this work, four kinds of Fe80+2xP10-xC10-x(x=0,1,2,3, at%) amorphous alloy ribbons with different Fe contents were prepared. The catalytic degradation of methylene blue (MB) solution by Fe80+2xP10-xC10-x(x=0,1,2,3, at%) amorphous alloy ribbons was studied by Fenton-like reaction. The results show that Fe-P-C amorphous alloy ribbons exhibit excellent degradation performance of MB solution by Fenton-like reaction, and the higher the iron content, the better the degradation performance. However, when the iron content exceeds 82at%, the effect of iron content on the degradation performance is not obvious.The surface morphology observation showed that with the increase of Fe content, the surface of the Fe-P-C amorphous ribbon after reaction showed a more porous structure, which was beneficial to obtain high degradation efficiency. The cyclic degradation test shows that the four Fe-P-C amorphous alloys with different iron contents have little difference and have long service life, which may be related to the formation of surface morphology with loose lamellar structure and 3D flower-like grid structure during the degradation process. The results of X-ray electron energy spectrum analysis showed that the different Fe content did not affect the degradation reaction mechanism of Fe-P-C amorphous alloy.
Key words:  Fe-based amorphous alloys    Fenton-like reaction    methylene blue(MB)    degradation
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TG139+.8  
基金资助: 国家自然科学基金(51771161)
通讯作者:  qli@xju.edu.cn   
作者简介:  马娅娅,2021年6月毕业于新疆大学,获得工学硕士学位。研究生期间主要从事铁基非晶合金催化性能的研究。
李强,新疆大学教授,博士研究生导师,享受国务院政府特殊津贴。2002年毕业于香港中文大学,获博士学位。2005年进入新疆大学物理科学与技术学院工作至今,主要研究方向包括大过冷态下的合金相变、块体非晶态合金和纳米合金的制备及其性能研究等。自入职新疆大学以来,共主持国家自然科学基金项目5项,在学术期刊发表SCI论文60余篇。
引用本文:    
马娅娅, 李强, 穆保霞, 马旭. 铁含量对Fe-P-C非晶合金降解亚甲基蓝性能的影响[J]. 材料导报, 2021, 35(21): 21085-21090.
MA Yaya, LI Qiang, MU Baoxia, MA Xu. Effect of Iron Content on the Degradation of Methylene Blue in Fe-P-C Amorphous Alloy. Materials Reports, 2021, 35(21): 21085-21090.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060276  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21085
1 Searle C E, Teale J. Lancet, 1982, 319(8271),564.
2 Kalme S D, Parshetti G K, Jadhav S U, et al. Bioresource Technology, 2007, 98(7),1405.
3 Li W W, Yu H Q, He Z. Energy & Environmental Science, 2013, 7,911.
4 Zhang F, Zhang W B, Shi Z, et al. Advanced Materials, 2013, 25,4192.
5 Zhu Z, Wang W, Qi D, et al. Advanced Materials, 2018, 30,1801870.
6 Chen B, Bi H, Ma Q, et al. Science China Materials, 2017, 60,1102.
7 Ding L, Zhang Z, Li Y. Science China Materials, 2017, 60,399.
8 Li K, Jiao T, Xing R, et al. Science China Materials, 2018, 61,728.
9 Ling L, Huang X Y, Zhang W X. Advanced Materials, 2018, 30,1705703.
10 Wang Q, Tian S, Long J, et al. Catalysis Today, 2014, 224,41.
11 Singh P, Raizada P, Kumari S, et al. Applied Catalysis A-General, 2014, 476,9.
12 Chen J, Liu W, Li Z, et al. Science China Materials, 2017, 61,382.
13 Miklos D B, Remy C, Jekel M, et al. Water Research, 2018, 139,118.
14 Iskandar F, Nandiyanto A, Yun K, et al. Advanced Materials, 2007, 19,1408.
15 Kumar A, Sharma G, Naushad M, et al. Chemical Engineering Journal, 2015, 280,175.
16 Zhang X, Wei W, Zhang S, et al. Science China Materials, 2019, 62,1888.
17 Wang J Q, Liu Y H, Chen M W, et al. Advanced Functional Materials, 2012, 22(12),2567.
18 Yang J F, Bian X F, Bai Y W, et al. Journal of Non-Crystalline Solids, 2012, 358(18-19),2571.
19 Zhang C Q, Zhu Z W, Zhang H F, et al. Journal of Environmental Sciences, 2012(6),55.
20 Liu P, Zhang J L, Zha M Q, et al. ACS Applied Materials & Interfaces, 2016, 6(8),5500.
21 Wang X F, Pan Y, Zhu Z R, et al. Chemosphere, 2014, 117,638.
22 Ma H J, Shen K C, Pan S P, et al. Journal of Non-Crystalline Solids, 2015, 425,67.
23 Scaglione F, Battezzati L. Journal Materials Science, 2015, 50(15),5238.
24 Tang Y, Shao Y, Chen N, et al. RSC Advances, 2015, 5,34032.
25 Tang Y, Shao Y, Chen N, et al. RSC Advances, 2014, 5(8),6215.
26 Jia Z, Zhang W C, Wang W M, et al. Applied Catalysis B-Environmental, 2016, 192,46.
27 Xie S H, Huang P, Kruzic J J, et al. Scientific Reports, 2016, 6,21947.
28 Ma H, Xu J, Ma E. Applied Physics Letters, 2003, 83,2793.
29 Luo X, Ran L, Liu Z, et al. Materials Letters, 2012, 76,96.
30 Inoue A, Zhang W, Zhang T, et al. Acta Materialia, 2001, 49,2645.
31 Wang P, Wang J Q, Li H, et al. Journal of Alloys Compounds, 2017, 701, 759.
32 Qin X D, Zhu Z W, Liu G, et al. Scientific Reports, 2015, 5,18226.
33 Peng G Q, Xie S H, Zeng X R, et al. Environmental Science & Technology, 2017, v.40(S2),131 (in Chinese).
彭广强, 谢盛辉, 曾燮榕, 等.环境科学与技术, 2017, v.40(S2),131.
34 Tahir K, Nazir S, Li B, et al. Separation and Purification Technology, 2015, 150,316.
35 Kamal T, Khan S B, Haider S, et al. International Journal of Biological Macromolecules, 2017, 104,56.
36 Zhang C, Zhu Z, Zhang H. Journal of Physics and Chemistry of Solids, 2017, 110,152.
37 Zhou S X, Dong B S, Qin J Y, et al. Journal Applied Physics, 2012, 112(2),697.
38 Wang Q Q, Chen M X, Lin P H, et al. Journal Materials Chemistry A, 2018, 6,10686.
[1] 胡绍争, 王菲, 李政, 马宏飞, 李萍. 新型全光谱响应W18O49/g-C3N4异质结催化剂的构建及光催化降解有机染料性能研究[J]. 材料导报, 2021, 35(8): 8011-8016.
[2] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[3] 姚玉梅, 袁湘汝, 韩鲁佳, 杨增玲, 刘贤. 畜禽骨蛋白质材料化利用的研究现状与发展趋势分析[J]. 材料导报, 2021, 35(17): 17136-17142.
[4] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[5] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[6] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[7] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[8] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[9] 赵杰, 钱俊雯, 赵军平. 基于Scopus的生物可降解金属材料文献调研与分析[J]. 材料导报, 2020, 34(Z1): 469-475.
[10] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[11] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[12] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[13] 王馨博, 苏茹月, 栗丽, 梁国杰, 赵越, 栾志强, 李凯, 习海玲. 锆基金属-有机骨架呼吸道防护材料研究进展[J]. 材料导报, 2020, 34(23): 23121-23130.
[14] 代朝猛, 李思, 段艳平, 刘曙光, 涂耀仁. 微塑料对水体中有机污染物迁移转化及生物有效性的影响研究进展[J]. 材料导报, 2020, 34(21): 21033-21037.
[15] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed